Advertisement

Journal of Materials Science

, Volume 51, Issue 12, pp 6051–6061 | Cite as

Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes

  • Dragoljub Vrankovic
  • Lukas Mirko Reinold
  • Ralf Riedel
  • Magdalena Graczyk-ZajacEmail author
Original Paper

Abstract

We present a systematic work to design a void-shell nanostructures for improving the stability of silicon electrodes while alloying with lithium. To enhance the electrical conductivity, silicon is coated with carbon by using a simple and non-hazard route prior to embedding the Si particles in silicon carbonitride (SiCN). An inactive matrix, namely a polymer-derived SiCN ceramic is used to stabilize the composite. Additionally, cavities around silicon to accommodate volume changes are introduced by partial carbon burning. Significant increase in porosity of more than one order of magnitude is found by means of BET measurements for the samples obtained after additional heat treatment in air. TGA coupled with FTIR spectrometry shows that the ceramic matrix is stable upon heating, while burned carbon originates from pyrolyzed fructose. TEM micrographs confirm the presence of carbon/void around silicon particles embedded in the ceramic matrix. Electrochemical investigations reveal an improved conductivity due to the presence of carbon coating. Contribution of silicon in lithium storage is identified, whereas voids introduced around the silicon particles are found to improve cycling stability of silicon.

Keywords

MoS2 Carbon Coating Cycling Stability Silicon Particle Ceramic Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We gratefully acknowledge the financial support of the German Research Foundation (DFG) SPP1473/JP8. We thank Christina Schitco for fruitful discussions and attentive manuscript proof reading. Furthermore, we also thank Ulrike Kunz, Claudia Fasel, and Cristina Schitco for their help with material characterization.

Supplementary material

10853_2016_9911_MOESM1_ESM.tif (737 kb)
Supplementary material 1 (TIFF 738 kb)
10853_2016_9911_MOESM2_ESM.tif (111 kb)
Supplementary material 2 (TIFF 111 kb)
10853_2016_9911_MOESM3_ESM.tif (609 kb)
Supplementary material 3 (TIFF 610 kb)
10853_2016_9911_MOESM4_ESM.tif (591 kb)
Supplementary material 4 (TIFF 591 kb)
10853_2016_9911_MOESM5_ESM.docx (350 kb)
Supplementary material 5 (DOCX 350 kb)

References

  1. 1.
    Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7(5):A93–A96CrossRefGoogle Scholar
  2. 2.
    Li J, Dahn JR (2007) An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 154(3):A156–A161CrossRefGoogle Scholar
  3. 3.
    Wachtler M, Besenhard JO, Winter M (2001) Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J Power Sources 94(2):189–193CrossRefGoogle Scholar
  4. 4.
    Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6(2):1522–1531CrossRefGoogle Scholar
  5. 5.
    Saint J, Morcrette M, Larcher D, Laffont L, Beattie S, Peres JP, Talaga D, Couzi M, Tarascon JM (2007) Towards a fundamental understanding of the improved electrochemical performance of silicon carbon composites. Adv Funct Mater 17(11):1765–1774CrossRefGoogle Scholar
  6. 6.
    Liu WR, Wang JH, Wu HC, Shieh DT, Yang MH, Wu NL (2005) Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries. J Eletrochem Soc 152(9):A1719–A1725CrossRefGoogle Scholar
  7. 7.
    Yang XL, Wen ZY, Xu XX, Lin B, Lin ZX (2006) High-performance silicon/carbon/graphite composites as anode materials for lithium ion batteries. J Electrochem Soc 153(7):A1341–A1344CrossRefGoogle Scholar
  8. 8.
    Kim I-S, Kumta PN (2004) High capacity Si/C nanocomposite anodes for Li-ion batteries. J Power Sources 136(1):145–149CrossRefGoogle Scholar
  9. 9.
    Kim IS, Blomgren GE, Kumta PN (2004) Si-SiC nanocomposite anodes synthesized using high-energy mechanical milling. J Power Sources 130:275–280CrossRefGoogle Scholar
  10. 10.
    Dimov N, Kugino S, Yoshio M (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochim Acta 48(11):1579–1587CrossRefGoogle Scholar
  11. 11.
    Mazouzi D, Lestriez B, Roue L, Guyomard D (2009) Silicon composite electrode with high capacity and long cycle life. Electrochem Solid State Lett 12(11):A215–A218CrossRefGoogle Scholar
  12. 12.
    Martin C, Alias M, Christien F, Crosnier O, Belanger D, Brousse T (2009) Graphite-grafted silicon nanocomposite as a negative electrode for lithium-ion batteries. Adv Mater 21(46):4735–4741CrossRefGoogle Scholar
  13. 13.
    Chen B, Flatt AK, Jian H, Hudson JL, Tour JM (2005) Molecular grafting to silicon surfaces in air using organic triazenes as stable diazonium sources and HF as a constant hydride-passivation source. Chem Mater 17(19):4832–4836CrossRefGoogle Scholar
  14. 14.
    Xu YH, Yin GP, Zuo PJ (2008) Geometric and electronic studies of Li15Si4 for silicon anode. Electrochim Acta 54(2):341–345CrossRefGoogle Scholar
  15. 15.
    Martin C, Crosnier O, Retoux R, Belanger D, Schleich DM, Brousse T (2011) Chemical coupling of carbon nanotubes and silicon nanoparticles for improved negative electrode performance in lithium-ion batteries. Adv Funct Mater 21(18):3524–3530CrossRefGoogle Scholar
  16. 16.
    Yang S, Li G, Zhu Q, Pan Q (2012) Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. J Mater Chem 22:3420–3425CrossRefGoogle Scholar
  17. 17.
    Chen D, Yi R, Chen S, Xu T, Gordin ML, Wang D (2014) Facile synthesis of graphene-silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes. Solid State Ionics 254:65–71CrossRefGoogle Scholar
  18. 18.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nano 3(1):31–35CrossRefGoogle Scholar
  19. 19.
    Chan CK, Ruffo R, Hong SS, Huggins RA, Cui Y (2009) Structural and electrochemical study of the reaction of lithium with silicon nanowires. J Power Sources 189(1):34–39CrossRefGoogle Scholar
  20. 20.
    Vlad A, Reddy ALM, Ajayan A, Singh N, Gohy J-Fo, Melinte S, Ajayan PM (2012) Roll up nanowire battery from silicon chips. Proc Natl Acad Sci 109(38):15168–15173CrossRefGoogle Scholar
  21. 21.
    Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039CrossRefGoogle Scholar
  22. 22.
    Wu H, Zheng G, Liu N, Carney TJ, Yang Y, Cui Y (2012) Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett 12(2):904–909CrossRefGoogle Scholar
  23. 23.
    Yue L, Zhang W, Yang J, Zhang L (2014) Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries. Electrochim Acta 125:206–217CrossRefGoogle Scholar
  24. 24.
    Zhou X, Tang J, Yang J, Xie J, Lulu M (2013) Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries. Electrochim Acta 87:663–668CrossRefGoogle Scholar
  25. 25.
    Li X, Meduri P, Chen X, Qi W, Engelhard MH, Xu W, Ding F, Xiao J, Wang W, Wang C, Zhang J-G, Liu J (2012) Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. J Mater Chem 22(22):11014–11017CrossRefGoogle Scholar
  26. 26.
    Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4(1):56–72CrossRefGoogle Scholar
  27. 27.
    Kaspar J, Graczyk-Zajac M, Lauterbach S, Kleebe H-J, Riedel R (2014) Silicon oxycarbide/nano-silicon composite anodes for Li-ion batteries: considerable influence of nano-crystalline vs. nano-amorphous silicon embedment on the electrochemical properties. J Power Sources 269:164–172CrossRefGoogle Scholar
  28. 28.
    Reinold LM, Graczyk-Zajac M, Gao Y, Mera G, Riedel R (2013) Carbon-rich SiCN ceramics as high capacity/high stability anode material for lithium-ion batteries. J Power Sources 236:224–229CrossRefGoogle Scholar
  29. 29.
    Reinold LM, Yamada Y, Graczyk-Zajac M, Munakata H, Kanamura K, Riedel R (2015) The influence of the pyrolysis temperature on the electrochemical behavior of carbon-rich SiCN polymer-derived ceramics as anode materials in lithium-ion batteries. J Power Sources 282:409–415CrossRefGoogle Scholar
  30. 30.
    Baek S-H, Reinold LM, Graczyk-Zajac M, Riedel R, Hammerath F, Buchner B, Grafe H-J (2014) Lithium dynamics in carbon-rich polymer-derived SiCN ceramics probed by nuclear magnetic resonance. J Power Sources 253:342–348CrossRefGoogle Scholar
  31. 31.
    Graczyk-Zajac M, Fasel C, Riedel R (2011) Polymer-derived-SiCN ceramic/graphite composite as anode material with enhanced rate capability for lithium ion batteries. J Power Sources 196(15):6412–6418CrossRefGoogle Scholar
  32. 32.
    Bhandavat R, Singh G (2012) Improved electrochemical capacity of precursor-derived Si(B)CN-carbon nanotube composite as Li-Ion battery anode. ACS Appl Mater Inter 4(10):5092–5097. doi: 10.1021/am3015795 CrossRefGoogle Scholar
  33. 33.
    Reinold LM, Graczyk-Zajac M, Fasel C, Riedel R (2011) Prevention of solid electrolyte interphase damaging on silicon by using polymer derived SiCN ceramics. ECS Trans 35:37–44CrossRefGoogle Scholar
  34. 34.
    David L, Bhandavat R, Barrera U, Singh G (2015) Polymer-derived ceramic functionalized MoS2 composite paper as a stable lithium-ion battery electrode. Scientific Rep 5(9792):1–7Google Scholar
  35. 35.
    David L, Bernard S, Gervais C, Miele P, Singh G (2015) Facile synthesis and high rate capability of silicon carbonitride/boron nitride composite with a sheet-like morphology. J Phys Chem C 119(5):2783–2791Google Scholar
  36. 36.
    David L, Asok D, Singh G (2014) Synthesis and extreme rate capability of SiAlCN functionalized carbon nanotube spray-on coatings as Li-Ion battery electrode. ACS Appl Mater Inter 6(18):16056–16064CrossRefGoogle Scholar
  37. 37.
    Bhandavat R, Singh G (2013) Stable and efficient Li-Ion battery anodes prepared from polymer-derived silicon oxycarbide carbon nanotube shell/core composites. J Phys Chem C 117(23):11899–11905. doi: 10.1021/jp310733b CrossRefGoogle Scholar
  38. 38.
    Joho F, Novak P, Spahr ME (2002) Safety aspects of graphite negative electrode materials for lithium-ion batteries. J Electrochem Soc 149(8):A1020–A1024CrossRefGoogle Scholar
  39. 39.
    Mera G, Navrotsky A, Sen S, Kleebe H-J, Riedel R (2013) Polymer-derived SiCN and SiOC ceramics—structure and energetics at the nanoscale. J Mater Chem A 1(12):3826–3836CrossRefGoogle Scholar
  40. 40.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  41. 41.
    de Boer JH, Linsen BG, van der Plas T, Zondervan GJ (1965) Studies on pore systems in catalysts: VII. description of the pore dimensions of carbon blacks by the t method. J Catal 4(6):649–653CrossRefGoogle Scholar
  42. 42.
    Colombo P, Riedel R, Soraru GD, Kleebe H-J (2010) Polymer derived ceramics: from nano-structure to applications. DEStech Publications Inc, LancasterCrossRefGoogle Scholar
  43. 43.
    Schitco C, Bazarjani MS, Riedel R, Gurlo A (2015) NH3-assisted synthesis of microporous silicon oxycarbonitride ceramics from preceramic polymers: a combined N2 and CO2 adsorption and small angle X-ray scattering study. J Mater Chem A 3:805–818CrossRefGoogle Scholar
  44. 44.
    Park J-K (2012) Principles and applications of lithium secondary batteries. Wiley-VCH Verlag GmbH & Co, KGaACrossRefGoogle Scholar
  45. 45.
    Graczyk-Zajac M, Wimmer M, Neumann C, Riedel R (2015) Lithium intercalation into SiCN/disordered carbon composite. Part 1: influence of initial carbon porosity on cycling performance/capacitygraczyk2015. J Solid State Electrochem 19:2763–2769CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dragoljub Vrankovic
    • 1
  • Lukas Mirko Reinold
    • 1
    • 2
  • Ralf Riedel
    • 1
  • Magdalena Graczyk-Zajac
    • 1
    Email author
  1. 1.Fachbereich Material- und GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Hüttenes-Albertus Chemische Werke GmbHHannoverGermany

Personalised recommendations