Journal of Materials Science

, Volume 51, Issue 11, pp 5252–5258 | Cite as

Synthesis of type-II CdSe(S)/Fe2O3 core/shell quantum dots: the effect of shell on the properties of core/shell quantum dots

  • Fatemeh Mirnajafizadeh
  • Fan Wang
  • Peter Reece
  • John Arron StrideEmail author
Original Paper


CdSe(S)/Fe2O3 core/shell quantum dots (QDs) were prepared in an aqueous synthetic route. These were shown to be highly crystalline nanoparticles using X-ray diffraction and HRTEM, whilst optical spectroscopy showed that the particles exhibited highly photoluminescent emissions. A red shift in the emission wavelength of CdSe(S) QDs coated with Fe2O3 was observed, despite the crystal structure of the core remaining intact after coating with ferric oxide, indicating a direct influence of the shell on the electronic levels of the QD core. The effects of the shell on the optical properties of core/shell QDs of these type-II CdSe(S)/Fe2O3 QDs are rationalised by comparison to type-I CdSe(S)/ZnO QDs.


Fe2O3 Select Area Electron Diffraction Zinc Oxide Excited Electron Ferric Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the School of Chemistry for the financial support, and the School of Physics and the Mark Wainwright Analytical Centre of University of New South Wales for facilities.

Supplementary material

10853_2016_9828_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1163 kb)


  1. 1.
    Wang J, Lin M, Yan Y, Wang Z, Ho PC, Loh KP (2009) CdSe/AsS core–shell quantum dots: preparation and two-photon fluorescence. J Am Chem Soc 131:11300–11301CrossRefGoogle Scholar
  2. 2.
    Wang M, Zhang M, Qian J, Zhao F, Shen L, Scholes GD, Winnik MA (2009) Enhancing the photoluminescence of polymer-stabilized CdSe/CdS/ZnS core/shell/shell and CdSe/ZnS core/shell quantum dots in water through a chemical-activation approach. Langmuir 25:11732–11740CrossRefGoogle Scholar
  3. 3.
    Pons T, Lequeux N, Mahler B, Sasnouski S, Fragola A, Dubertret B (2009) Synthesis of near-infrared-emitting, water-soluble CdTeSe/CdZnS core/shell quantum dots. Chem Mater 21:1418–1424CrossRefGoogle Scholar
  4. 4.
    Datta A, Panda SK, Chaudhuri S (2007) Synthesis and optical and electrical properties of CdS/ZnS core/shell nanorods. J Phys Chem C 111:17260–17264CrossRefGoogle Scholar
  5. 5.
    Impellizzeri S, Monaco S, Yildiz I, Amelia M, Credi A, Raymo FM (2010) Structural implications on the electrochemical and spectroscopic signature of CdSe–ZnS core–shell quantum dots. J Phys Chem C 114:7007–7013CrossRefGoogle Scholar
  6. 6.
    Malik MA, O’Brien P, Revaprasadu N (2002) A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem Mater 14:2004–2010CrossRefGoogle Scholar
  7. 7.
    Talapin DV, Mekis I, Gotzinger S, Kornowski A, Benson O, Weller H (2004) CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core–shell–shell nanocrystals. J Phys Chem B 108:18826–18831CrossRefGoogle Scholar
  8. 8.
    Qian H, Li L, Ren J (2005) One-step and rapid synthesis of high quality alloyed quantum dots (CdSe–CdS) in aqueous phase by microwave irradiation with controllable temperature. Mater Res Bull 40:1726–1736CrossRefGoogle Scholar
  9. 9.
    Blackman B, Battaglia D, Peng X (2008) Bright and water-soluble near IR-emitting CdSe/CdTe/ZnSe type-II/type-i nanocrystals, tuning the efficiency and stability by growth. Chem Mater 20:4847–4853CrossRefGoogle Scholar
  10. 10.
    Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252CrossRefGoogle Scholar
  11. 11.
    Korsunska NE, Dybiec M, Zhukov L, Ostapenko S, Zhukov T (2005) Reversible and non-reversible photo-enhanced luminescence in CdSe/ZnS quantum dots. Semicond Sci Technol 20:876–881CrossRefGoogle Scholar
  12. 12.
    Ivanov SA, Piryatinski A, Nanda J, Tretiak S, Zavadil KR, Wallace WO, Werder D, Klimov VI (2007) Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J Am Chem Soc 129:11708–11719CrossRefGoogle Scholar
  13. 13.
    Balet LP, Ivanov SA, Piryatinski A, Achermann M, Klimov VI (2004) Inverted core/shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Lett 4:1485–1488CrossRefGoogle Scholar
  14. 14.
    Jia G-Z, Fei X-N, Wang J (2010) synthesis of water dispersed Cdse/Znse type-II core-shell structure quantum dots. Chalcogenide Lett 7:181–185Google Scholar
  15. 15.
    Yildiz I, McCaughan B, Cruickshank SF, Callan JF, Raymo FIM (2009) Biocompatible CdSe–ZnS core–shell quantum dots coated with hydrophilic polythiols. Langmuir 25:7090–7096CrossRefGoogle Scholar
  16. 16.
    Xie R, Peng X (2008) Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. Angew Chem Int Ed 47:7677–7680CrossRefGoogle Scholar
  17. 17.
    Mews A, Eychmueller A, Giersig M, Schooss D, Weller H (1994) Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J Phys Chem 98:934–941CrossRefGoogle Scholar
  18. 18.
    Tian Y, Newton T, Kotov NA, Guldi DM, Fendler JH (1996) Coupled composite CdS–CdSe and core–shell types of (CdS)CdSe and (CdSe)CdS nanoparticles. J Phys Chem 100:8927–8939CrossRefGoogle Scholar
  19. 19.
    Hu D, Zhang P, Gong P, Lian S, Lu Y, Gao D, Cai L (2011) A fast synthesis of near-infrared emitting CdTe/CdSe quantum dots with small hydrodynamic diameter for in vivo imaging probes. Nanoscale 3:4724–4732CrossRefGoogle Scholar
  20. 20.
    Ning Z, Yuan C, Tian H, Fu Y, Li L, Sun L, Aagren H (2012) Type-II colloidal quantum dot sensitized solar cells with a thiourea based organic redox couple. J Mater Chem 22:6032–6037CrossRefGoogle Scholar
  21. 21.
    Aldeek F, Mustin C, Balan L, Medjahdi G, Roques-Carmes T, Arnoux P, Schneider R (2011) Enhanced photostability from CdSe(S)/ZnO core/shell quantum dots and their use in biolabeling. Eur J Inorg Chem 2011:794–801CrossRefGoogle Scholar
  22. 22.
    Klayman DL, Griffin TS (1973) Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules. J Am Chem Soc 95:197–199CrossRefGoogle Scholar
  23. 23.
    Filgueiras DA-FP, Gouveia DSA, Alves DMS, Botelho JR, Barbosa-Filho JM, Miller J, Lira BF (2004) Synthesis and characterization of three new organo-selenium compounds. A convenient synthesis of aroylselenoglycolic acids. ARKIVOC 2004:22–26CrossRefGoogle Scholar
  24. 24.
    Zhang H, Wang L, Xiong H, Hu L, Yang B, Li W (2003) Hydrothermal synthesis for high-quality CdTe nanocrystals. Adv Mater 15:1712–1715CrossRefGoogle Scholar
  25. 25.
    Mirnajafizadeh F (2015) Synthesis and investigation of the properties of water soluble quantum dots for bioapplications. PhD Thesis, University of New South Wales, 2015Google Scholar
  26. 26.
    Moulder FJ, Stickle FW, Sobol EP, Bomben DK (1992) Handbook of X-ray photoelectron spectroscopy, 2nd edn. Waltham, Perkin-Elmer Corp., p 81Google Scholar
  27. 27.
    Weller H (1993) Kolloidale Halbleiter-Q-Teilchen: Chemie im Übergangsbereich zwischen Festkörper und Molekül. Angew Chem 105:43–55CrossRefGoogle Scholar
  28. 28.
    Amelia M, Impellizzeri S, Monaco S, Yildiz I, Silvi S, Raymo FM, Credi A (2011) Structural and size effects on the spectroscopic and redox properties of CdSe nanocrystals in solution: the role of defect states. ChemPhysChem 12:2280–2288CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fatemeh Mirnajafizadeh
    • 1
  • Fan Wang
    • 2
  • Peter Reece
    • 2
  • John Arron Stride
    • 1
    • 3
    Email author
  1. 1.School of ChemistryUniversity of New South WalesSydneyAustralia
  2. 2.School of PhysicsUniversity of New South WalesSydneyAustralia
  3. 3.Bragg InstituteAustralian Nuclear Science and Technology OrganisationMenaiAustralia

Personalised recommendations