Advertisement

Journal of Materials Science

, Volume 51, Issue 9, pp 4588–4600 | Cite as

Flexographic printing of nanoparticulate tin-doped indium oxide inks on PET foils and glass substrates

  • Moritz Wegener
  • Dieter Spiehl
  • Hans Martin Sauer
  • Florian Mikschl
  • Xinxin Liu
  • Nadja Kölpin
  • Michael Schmidt
  • Michael P. M. Jank
  • Edgar Dörsam
  • Andreas RoosenEmail author
Original Paper

Abstract

This contribution deals with flexographic printing of nanoparticulate tin-doped indium oxide (ITO) inks for the manufacture of fine lines on PET foils and glass substrates. The development and optimization of ITO inks, based on solutions of water and ethanol, for the flexographic printing process is presented. The influence of the solvent composition, of the particle content, and of the molar mass of the binder polyvinylpyrrolidone on the printing result is shown. ITO lines with a minimum line width of around 120 μm were printed using a printing plate with a feature size of 50 μm; the ITO lines exhibited a thickness of around 1 μm. Laser post-treatment was used to consolidate the top layer of the nanoparticulate ITO structures resulting in improved electrical properties; low sheet resistance values of around 300 Ω/□ were achieved.

Keywords

Shear Rate Sheet Resistance Solvent Composition High Surface Tension Printing Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The financial support of the German Research Foundation (DFG, Graduiertenkolleg 1161) as well as the support of the ITO powder from our industrial partner Evonik Industries AG, Essen, Germany, is gratefully acknowledged. Furthermore, the authors thank the funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative. The authors thank Dr. Guoping Bei (University of Erlangen-Nuremberg, Department of Materials Science, Glass and Ceramics) for recording the FESEM microscope pictures.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gordon RG (2000) Criteria for choosing transparent conductors. MRS Bull 25:52–57. doi: 10.1557/mrs2000.151 CrossRefGoogle Scholar
  2. 2.
    Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35. doi: 10.1088/0268-1242/20/4/004 CrossRefGoogle Scholar
  3. 3.
    Carotenuto G, Valente M, Túlio O, Sciumè G, Valente T, Pepe GP, Ruotolo A, Nicolais L (2006) Preparation and characterization of transparent/conductive nano-composites films. J Mater Sci 41:5587–5592. doi: 10.1007/s10853-006-0253-y CrossRefGoogle Scholar
  4. 4.
    Hosono H (2007) Recent progress in transparent oxide semiconductors: materials and device application. Thin Solid Films 515:6000–6014. doi: 10.1016/j.tsf.2006.12.125 CrossRefGoogle Scholar
  5. 5.
    Lewis BG, Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bull 25:22–27. doi: 10.1557/mrs2000.147 CrossRefGoogle Scholar
  6. 6.
    Al-Dahoudi N, Bisht H, Göbbert C, Krajewski T, Aegerter MA (2001) Transparent conducting, anti-static and anti-static–anti-glare coatings on plastic substrates. Thin Solid Films 392:299–304. doi: 10.1016/S0040-6090(01)01047-1 CrossRefGoogle Scholar
  7. 7.
    Granqvist CG, Hultåker A (2002) Transparent and conducting ITO films: new developments and applications. Thin Solid Films 411:1–5. doi: 10.1016/S0040-6090(02)00163-3 CrossRefGoogle Scholar
  8. 8.
    Betz U, Olsson MK, Marthy J, Escolá MF (2008) On the synthesis of ultra smooth ITO thin films by conventional direct current magnetron sputtering. Thin Solid Films 516:1334–1340. doi: 10.1016/j.tsf.2007.03.094 CrossRefGoogle Scholar
  9. 9.
    Ray SN, Banerjee R, Basu N, Batabyal AK, Barua AK (1983) Properties of tin doped indium oxide thin films prepared by magnetron sputtering. J Appl Phys 54:3497–3501. doi: 10.1063/1.332415 CrossRefGoogle Scholar
  10. 10.
    Hamberg I, Granqvist CG (1986) Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J Appl Phys 60:R123–R160. doi: 10.1063/1.337534 CrossRefGoogle Scholar
  11. 11.
    Gross M, Winnacker A, Wellmann PJ (2007) Electrical, optical and morphological properties of nanoparticle indium–tin–oxide layers. Thin Solid Films 515:8567–8572. doi: 10.1016/j.tsf.2007.03.136 CrossRefGoogle Scholar
  12. 12.
    Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412. doi: 10.1016/j.solmat.2008.10.004 CrossRefGoogle Scholar
  13. 13.
    Straue N, Rauscher M, Dressler M, Roosen A (2012) Tape casting of ITO green tapes for flexible electroluminescent lamps. J Am Ceram Soc 95:684–689. doi: 10.1111/j.1551-2916.2011.04836.x CrossRefGoogle Scholar
  14. 14.
    Wegener M, Eckert D, Roosen A (2015) Manufacture of sub-μm thin, particulate-based ITO layers by roller coating. J Eur Ceram Soc 35:2321–2332. doi: 10.1016/j.jeurceramsoc.2015.02.012 CrossRefGoogle Scholar
  15. 15.
    Straue N, Prado S, Polster S, Roosen A (2011) Profile rod technique: continuous manufacture of submicrometer-thick ceramic green tapes and coatings demonstrated for nanoparticulate zinc oxide powders. J Am Ceram Soc 94:1698–1705. doi: 10.1111/j.1551-2916.2010.04302.x CrossRefGoogle Scholar
  16. 16.
    Murphy CE, Yang L, Ray S, Yu L, Knox S, Stingelin N (2011) Wire-bar coating of semiconducting polythiophene/insulating polyethylene blend thin films for organic transistors. J Appl Phys 110:093523. doi: 10.1063/1.3660779 CrossRefGoogle Scholar
  17. 17.
    Denneulin A, Blayo A, Bras J, Neuman C (2008) PEDOT:PSS coating on specialty papers: process optimization and effects of surface properties on electrical performances. Prog Org Coat 63:87–91. doi: 10.1016/j.porgcoat.2008.04.009 CrossRefGoogle Scholar
  18. 18.
    Le Hue P (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49–62Google Scholar
  19. 19.
    Han S, Lee D, Herman GS, Chang C (2009) Inkjet-printed high mobility transparent-oxide semiconductors. J Display Technol 5:520–524. doi: 10.1109/JDT.2009.2024330 CrossRefGoogle Scholar
  20. 20.
    Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22:673. doi: 10.1002/adma.200901141 CrossRefGoogle Scholar
  21. 21.
    Kölpin N, Wegener M, Teuber E, Polster S, Frey L, Roosen A (2013) Conceptional design of nano-particulate ITO inks for inkjet printing of electron devices. J Mater Sci 48:1623–1631. doi: 10.1007/s10853-012-6919-8 CrossRefGoogle Scholar
  22. 22.
    Krebs FC, Fyenbo J, Jørgensen M (2010) Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J Mater Chem 20:8994–9001. doi: 10.1039/c0jm01178a CrossRefGoogle Scholar
  23. 23.
    Kittila M, Hagberg J, Jakku E, Leppavuori S (2004) Direct gravure printing (DGP) method for printing fine-line electrical circuits on ceramics. IEEE Trans Electron Packag Manufact 27:109–114. doi: 10.1109/TEPM.2004.837959 CrossRefGoogle Scholar
  24. 24.
    Alsaid DA, Rebrosova E, Joyce M, Rebros M, Atashbar M, Bazuin B (2012) Gravure printing of ITO transparent electrodes for applications in flexible electronics. J. Display Technol 8:391–396. doi: 10.1109/JDT.2012.2191765 CrossRefGoogle Scholar
  25. 25.
    DFTA Deutschsprachige Flexdruck-fachgruppe e.V, Meyer K.-H. (ed) (2006) Technik des Flexodrucks, 5th edn. Rek & Thomas Medien AG, St. GallenGoogle Scholar
  26. 26.
    Theopold A, Neumann J, Massfelder D, Dörsam E (2012) Effects of solvent exposure on flexographic printing plates. In: 39th international research conference of iarigaiGoogle Scholar
  27. 27.
    Frey M, Clement F, Dilfer S, Erath D, Biro D (2011) Front-side metalization by means of flexographic printing. Energy Procedia 8:581–586. doi: 10.1016/j.egypro.2011.06.186 CrossRefGoogle Scholar
  28. 28.
    Ederth J, Heszler P, Hultåker A, Niklasson G, Granqvist C (2003) Indium tin oxide films made from nanoparticles: models for the optical and electrical properties. Thin Solid Films 445:199–206. doi: 10.1016/S0040-6090(03)01164-7 CrossRefGoogle Scholar
  29. 29.
    Al-Dahoudi N, Aegerter MA (2006) Comparative study of transparent conductive In2O3: Sn (ITO) coatings made using a sol and a nanoparticle suspension. Thin Solid Films 502:193–197. doi: 10.1016/j.tsf.2005.07.273 CrossRefGoogle Scholar
  30. 30.
    Puetz J, Aegerter MA (2008) Direct gravure printing of indium tin oxide nanoparticle patterns on polymer foils. Thin Solid Films 516:4495–4501. doi: 10.1016/j.tsf.2007.05.086 CrossRefGoogle Scholar
  31. 31.
    Heusing S, de Oliveira PW, Kraker E, Haase A, Palfinger C, Veith M (2009) Wet chemical deposited ITO coatings on flexible substrates for organic photodiodes. Thin Solid Films 518:1164–1169. doi: 10.1016/j.tsf.2009.06.056 CrossRefGoogle Scholar
  32. 32.
    Gross M, Linse N, Maksimenko I, Wellmann PJ (2009) Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices. Adv Eng Mater 11:295–301. doi: 10.1002/adem.200800292 CrossRefGoogle Scholar
  33. 33.
    Baum M, Alexeev I, Schmidt M (2011) Laser treatment of ITO and ZnO nanoparticles for the production of thin conducting layers on transparent substrates. JLMN. doi: 10.2961/jlmn.2011.03.0003 Google Scholar
  34. 34.
    Schroder DK (2006) Semiconductor material and device characterization, 3rd edn. IEEE Press, WileyGoogle Scholar
  35. 35.
    Deganello D, Cherry JA, Gethin DT, Claypole TC (2010) Patterning of micro-scale conductive networks using reel-to-reel flexographic printing. Thin Solid Films 518:6113–6116. doi: 10.1016/j.tsf.2010.05.125 CrossRefGoogle Scholar
  36. 36.
    Chan C, Ko T, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:1–54. doi: 10.1016/0167-5729(96)80003-3 CrossRefGoogle Scholar
  37. 37.
    Young T (1805) An essay on the cohesion of fluids. Philos Trans R Soc Lond. doi: 10.1098/rstl.1805.0005 Google Scholar
  38. 38.
    Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81:739. doi: 10.1103/RevModPhys.81.739 CrossRefGoogle Scholar
  39. 39.
    Mischke P (2007) Filmbildung in modernen Lacksystemen. Farbe-und-Lack-Edition. Vincentz Network, HannoverGoogle Scholar
  40. 40.
    Königer T, Münstedt H (2009) Influence of polyvinylpyrrolidone on properties of flexible electrically conducting indium tin oxide. J Mater Sci 44:2736–2742. doi: 10.1007/s10853-009-3357-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Moritz Wegener
    • 1
  • Dieter Spiehl
    • 2
  • Hans Martin Sauer
    • 2
  • Florian Mikschl
    • 3
    • 4
  • Xinxin Liu
    • 5
  • Nadja Kölpin
    • 1
  • Michael Schmidt
    • 3
    • 4
  • Michael P. M. Jank
    • 6
  • Edgar Dörsam
    • 2
  • Andreas Roosen
    • 1
    Email author
  1. 1.Department of Materials Science, Glass and CeramicsUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Institute of Printing Science and TechnologyTechnical University of DarmstadtDarmstadtGermany
  3. 3.Department of Mechanical Engineering, Photonic TechnologiesUniversity of Erlangen-NurembergErlangenGermany
  4. 4.Erlangen Graduate School in Advanced Optical Technologies (SAOT)University of Erlangen-NurembergErlangenGermany
  5. 5.Department of Electrical Engineering, Electron DevicesUniversity of Erlangen-NurembergErlangenGermany
  6. 6.Fraunhofer Institute for Integrated Systems and Device TechnologyErlangenGermany

Personalised recommendations