Skip to main content

Advertisement

Log in

Mechanical properties of self-setting composites: influence of the carboxymethylcellulose content and hydration state

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The impact of the carboxymethylcellulose (CMC) content on the mechanical properties of calcium phosphate–calcium carbonate–CMC composite cements for bone substitution was investigated. The relevance of the compressive test conditions (wet or dried composite cements) is discussed and models are proposed to better understand the mechanisms involved in the mechanical properties of the composite materials. Based on a modellisation using the Voigt model for dried composite cements, we show that a minimum of CMC content of around 10–20 % is needed to enhance the mechanical properties of the dried composite materials (up to 86 MPa for the composite including 50 wt% CMC) through the formation of a mineral–organic entangled network. The compressive strength of the wet samples is low (<3 MPa) but the gain observed in the dried composites is encouraging and might be extrapolated to wet conditions if we were to use a less hydrophilic polysaccharide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dorozhkin SV (2008) Calcium orthophosphate cements for biomedical application. J Mater Sci 43:3028–3057. doi:10.1007/s10853-008-2527-z

    Article  Google Scholar 

  2. Zhang J, Liu W, Schnitzler V, Tancret F, Bouler JM (2014) Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 10:1035–1049

    Article  Google Scholar 

  3. Mickiewicz R, Mayes AM, Knaack D (2002) Polymer-calcium phosphate cement composites for bone substitutes. J Biomed Mater Res 61:581–592

    Article  Google Scholar 

  4. Ginebra MP, Rilliard A, Fernández E, Elvira C, San Román J, Planell JA (2001) Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug. J Biomed Mater Res 57:113–118

    Article  Google Scholar 

  5. Alves HLR, Dos Santos L, Bergmann CP (2008) Injectability evaluation of tricalcium phosphate bone cement. J Mater Sci 19:2241–2246. doi:10.1007/s10856-007-3329-6

    Google Scholar 

  6. Wang X, Chen L, Xiang H, Ye J (2007) Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B 81:410–418

    Article  Google Scholar 

  7. Currey JD (2012) The structure and mechanics of bone. J Mater Sci 47:41–54. doi:10.1007/s10853-011-5914-9

    Article  Google Scholar 

  8. Laquerrière P, Grandjean-Laquerriere A, Jallot E, Balossier G, Frayssinet P, Guenounou M (2003) Importance of hydroxyapatite particles characteristics on cytokines production by human monocytes in vitro. Biomaterials 24:2739–2747

    Article  Google Scholar 

  9. Perez R, Kim HW, Ginebra MP (2012) Polymeric additives to enhance the functional properties of calcium phosphate cements. J Tissue Eng 3:2041731412439555

    Article  Google Scholar 

  10. Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724. doi:10.1007/s10853-009-3770-7

    Article  Google Scholar 

  11. Rowley J, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  Google Scholar 

  12. Francis Suh JK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  Google Scholar 

  13. Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27:3955–3963

    Article  Google Scholar 

  14. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17:205–213

    Article  Google Scholar 

  15. Combes C, Miao B, Bareille R, Rey C (2006) Preparation, physical-chemical characterisation and cytocompatibility of calcium carbonate cements. Biomaterials 27:1945–1954

    Article  Google Scholar 

  16. Tadier S, Le Bolay N, Rey C, Combes C (2011) Co-grinding significance for calcium carbonate-calcium phosphate mixed cement. Part I: effect of particle size and mixing on solid phase reactivity. Acta Biomater 7:1817–1826

    Article  Google Scholar 

  17. Jacquart S, Siadous R, Henocq-Pigasse C, Bareille R, Roques C, Rey C, Combes C (2013) Composition and properties of silver-containing calcium carbonate-calcium phosphate bone cement. J Mater Sci 24:2665–2675. doi:10.1007/s10856-013-5014-2

    Google Scholar 

  18. Mishra PC, Singh VK, Narang KK, Singh NK (2003) Effect of carboxymethyl-cellulose on the properties of cement. Mater Sci Eng A 357:13–19

    Article  Google Scholar 

  19. Farooque K, Yeasmin Z, Halim ME, Mahmood AJ, Mollah MYA (2010) Effect of carboxymethyl cellulose on the properties of ordinary Portland cement, Bangladesh. J Sci Ind Res 45:1–8

    Google Scholar 

  20. Akashi A, Matsuya Y, Unemori M, Akamine A (2001) Release profile of antimicrobial agents from α-tricalcium phosphate cement. Biomaterials 22:2713–2717

    Article  Google Scholar 

  21. Kobayashi H, Fujishiro T, Belkoff SM, Kobayashi N, Turner AS, Seim HB, Zitelli J, Hawkins M, Bauer TW (2009) Long-term evaluation of a calcium phosphate bone cement with carboxymethyl cellulose in a vertebral defect model. J Biomed Mater Res Part A 88:880–888

    Article  Google Scholar 

  22. Park SH, Tofighi A, Wang X, Strunk M, Ricketts T, Chang J, Kaplan DL (2011) Calcium phosphate combination biomaterials as human mesenchymal stem cell delivery vehicles for bone repair. J Biomed Mater Res Part B 97:235–244

    Article  Google Scholar 

  23. Wagoner Johnson AJ, Herschler B (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7:16–30

    Article  Google Scholar 

  24. Layek RK, Kundu A, Nandi AK (2013) High-performance nanocomposites of sodium carboxymethylcellulose and graphene oxide. Macromol Mater Eng 298:1166–1175

    Article  Google Scholar 

  25. Brenntag Canada Inc. (2010) Material safety data sheet: Carboxymethylcellulose gum, Aqualon, p 1–6

  26. Burguera EF, Xu HHK, Weir MD (2005) Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. J Biomed Mater Res B 77:126–134

    Google Scholar 

  27. Xu HHK, Simon CG (2005) Fast setting calcium phosphate—chitosan scaffold: mechanical properties and biocompatibility. Biomaterials 26:1337–1348

    Article  Google Scholar 

  28. Kawashita M, Nakao M, Minoda M, Kim HM, Beppu T, Miyamoto T, Kokubo T, Nakamura T (2003) Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 24:2477–2484

    Article  Google Scholar 

  29. Nge TT, Sugiyama J (2007) Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid. J Biomed Mater Res Part A 81:124–134

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Agence Nationale de la Recherche (ANR—TecSan 2009 programme) for supporting this research (Grant No. BIOSINJECT-ANR-09-TECS-004). The authors thank Eve Hui (internship from the Université de Technologie de Compiègne, France) for her help with the experimental part of this study and Sophie Girod-Fullana and Fabien Brouillet from CIRIMAT (Toulouse, France) for their help in the selection of the polysaccharide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christèle Combes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacquart, S., Poquillon, D., Dechambre, G. et al. Mechanical properties of self-setting composites: influence of the carboxymethylcellulose content and hydration state. J Mater Sci 51, 4296–4305 (2016). https://doi.org/10.1007/s10853-016-9739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9739-4

Keywords

Navigation