Journal of Materials Science

, Volume 52, Issue 9, pp 4997–5013 | Cite as

Effect of isolation method on reinforcing capability of recycled cotton nanomaterials in thermoplastic polymers

  • Nasim Farahbakhsh
  • Peiman Shahbeigi-Roodposhti
  • Hasan Sadeghifar
  • Richard A. Venditti
  • Jesse S. Jur
Original Paper


Cellulose extracted from recycled pulverized cotton in nanocrystalline cellulose (CNC) and nanofibrillated cellulose (NFC) forms is investigated as a reinforcing agent in low-density polyethylene (LDPE) nanocomposites. The effect of extraction processing on the pulverized cotton is shown to influence the degree of crystallinity, morphology, and thermal stability of cellulose nanomaterials. Melt compounding of CNC with LDPE resulted in polymer nanocomposites with no discoloration at 170 °C. Significant differences observed in transparency, mechanical, and thermal properties of LDPE nanocomposite films, are demonstrated to be a result of the microstructure and the content of cellulose nanomaterials. Thermal analysis using thermogravimetric analyzer and differential scanning calorimeter showed higher thermal stability and degree of crystallinity of NFC/LDPE comparing to CNC/LDPE nanocomposite films. Tensile analysis exhibited a higher elastic modulus and tensile strength for the NFC material. 10 wt% of NFC reinforcing agent showed 32% improved strength and higher transparency over the one with CNC.


Bacterial Cellulose High Aspect Ratio Percolation Threshold LDPE Nanocomposite Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support from Cotton Inc. (12-358). The cooperation of MeadWestvaco Company to process NFC-pCot is also greatly appreciated. We also thank Prof. Behnam Pourdeyhimi and the N.C. State Nonwovens Institute for providing LDPE polymer and NCRC characterization facilities.


  1. 1.
    Stammen JA, Williams S, Ku DN, Guldberg RE (2001) Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22:799–806CrossRefGoogle Scholar
  2. 2.
    Engelberg I, Kohn J (1991) Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12:292–304CrossRefGoogle Scholar
  3. 3.
    Hallab NJ, Bundy KJ, O’Connor K, Moses RL, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7:55–71CrossRefGoogle Scholar
  4. 4.
    Shahbeig Roodposhti P, Farahbakhsh N, Sarkar A, Murty KL (2015) A microstructural approach to the equal channel angular processing of commercially pure titanium—a review. Trans Nonferr Met Soc China 25:1353–1366CrossRefGoogle Scholar
  5. 5.
    Shahbeigi Roodposhti P, Sarkar A, Murty KL, Scattergood R (2015) Microstructural development of high temperature deformed AZ31 magnesium alloys. Mater Sci Eng A 626:195–202CrossRefGoogle Scholar
  6. 6.
    Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527CrossRefGoogle Scholar
  7. 7.
    Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563CrossRefGoogle Scholar
  8. 8.
    Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009CrossRefGoogle Scholar
  9. 9.
    Tingaut P, Zimmermann T, Sèbe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105–20111CrossRefGoogle Scholar
  10. 10.
    Dong X, Revol J, Gray D (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRefGoogle Scholar
  11. 11.
    Ben Azouz K, Ramires EC, Van Den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240CrossRefGoogle Scholar
  12. 12.
    Bahar E, Ucar N, Onen A, Wang Y, Oksuz M, Ayaz O, Ucar M, Demir A (2012) Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci 125:2882–2889CrossRefGoogle Scholar
  13. 13.
    Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111CrossRefGoogle Scholar
  14. 14.
    Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677CrossRefGoogle Scholar
  15. 15.
    Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35:146–152CrossRefGoogle Scholar
  16. 16.
    Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84:211–215CrossRefGoogle Scholar
  17. 17.
    Farahbakhsh N, ShahbeigiRoodposhti P, Ayoub AS, Venditti RA, Jur JS (2014) Melt extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J Appl Polym Sci 132:41857Google Scholar
  18. 18.
    Farahbakhsh N, Venditti RA, Jur JS (2014) Mechanical and thermal investigation of thermoplastic nanocomposite films fabricated using micro- and nano-sized fillers from recycled cotton T-shirts. Cellulose 21:2743–2755CrossRefGoogle Scholar
  19. 19.
    Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRefGoogle Scholar
  20. 20.
    Zhang J, Rizvi GM, Park CB (2011) Effects of wood fiber content on the rheological properties, crystallization behavior, and cell morphology of extruded wood fiber/HDPE composites foams. Bioresources 6:4979–4989Google Scholar
  21. 21.
    Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65CrossRefGoogle Scholar
  22. 22.
    Ebeling T, Paillet M, Borsali R, Diat O, Dufresne A, Cavaillé JY, Chanzy H (1999) Shear-induced orientation phenomena in suspensions of cellulose microcrystals, revealed by small angle X-ray scattering. Langmuir 15:6123–6126CrossRefGoogle Scholar
  23. 23.
    Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol Biosci 5:1101–1107CrossRefGoogle Scholar
  24. 24.
    Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRefGoogle Scholar
  25. 25.
    Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17:289–298CrossRefGoogle Scholar
  26. 26.
    Siaueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432CrossRefGoogle Scholar
  27. 27.
    Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  28. 28.
    Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294CrossRefGoogle Scholar
  29. 29.
    Shahbeigi Roodposhti P, Sarkar A, Murty KL, Scattergood RO (2015) Dislocation density evolution during creep of AZ31Mg alloy: a study by X-ray diffraction line profile analysis. Metallogr Microstruct Anal 4:337–343CrossRefGoogle Scholar
  30. 30.
    Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15:149–159CrossRefGoogle Scholar
  31. 31.
    Hamad WY, Hu TQ (2010) Structure-process-yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402Google Scholar
  32. 32.
    Qin Z-Y, Tong G, Chin YCF, Zhou J-C (2011) Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation. Bioresources 6:1136–1146Google Scholar
  33. 33.
    Yue Y, Zhou C, French AD, Xia G, Han G, Wang Q, Wu Q (2012) Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19:1173–1187CrossRefGoogle Scholar
  34. 34.
    Kargarzadeh H, Ahmad I, Abdullah I, Dufresne A, Zainudin SY, Sheltami RM (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866CrossRefGoogle Scholar
  35. 35.
    Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493CrossRefGoogle Scholar
  36. 36.
    George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57CrossRefGoogle Scholar
  37. 37.
    Ma H, Zhou B, Li HS, Li YQ, Ou SY (2011) Green composite films composed of nanocrystalline cellulose and a cellulose matrix regenerated from functionalized ionic liquid solution. Carbohydr Polym 84:383–389CrossRefGoogle Scholar
  38. 38.
    Pandey JK, Lee CS, Ahn S-H (2010) Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers. J Appl Polym Sci 115:2493–2501CrossRefGoogle Scholar
  39. 39.
    Alloin F, D’Aprea A, Dufresne A, El Kissi N, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973CrossRefGoogle Scholar
  40. 40.
    Trovatti E, Oliveira L, Freire CSR, Silvestre AJD, Pascoal Neto C, Cruz Pinto JJC, Gandini A (2010) Novel bacterial cellulose-acrylic resin nanocomposites. Compos Sci Technol 70:1148–1153CrossRefGoogle Scholar
  41. 41.
    Ben Mabrouk A, Kaddami H, Boufi S, Erchiqui F, Dufresne A (2012) Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19:843–853CrossRefGoogle Scholar
  42. 42.
    Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66:2187–2196CrossRefGoogle Scholar
  43. 43.
    Samir A, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whisker, their properties and their application in nanocomposites field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  44. 44.
    Ouali N, Cavaille JY, Perez J (1991) Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast Rubber Compos Process Appl 16:55–60Google Scholar
  45. 45.
    Halpin JC, Kardos JL (1972) Moduli of crystalline polymers employing composite theory. J Appl Phys 43:2235–2241CrossRefGoogle Scholar
  46. 46.
    Takayanagi M, Minami S, Uemura S (1964) Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J Polym Sci Part C 5:113–122CrossRefGoogle Scholar
  47. 47.
    Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6:322–330CrossRefGoogle Scholar
  48. 48.
    Sturcova A, Davies G, Eichhorn S (2005) Elastic modulus and stress-transfer properties of tunicate. Biomacromolecules 6:1055–1061CrossRefGoogle Scholar
  49. 49.
    Tashiro K, Kobayashi M (1991) Theoretical evaluation of 3-dimensional elastic constants of native and regenerated celluloses—role of hydrogen-bonds. Polymer 32:1516–1530CrossRefGoogle Scholar
  50. 50.
    Rusli R, Eichhorn SJ (2008) Determination of the stiffness of cellulose nanowhiskers and the fiber-matrix interface in a nanocomposite using Raman spectroscopy. Appl Phys Lett 93:033111CrossRefGoogle Scholar
  51. 51.
    Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Nasim Farahbakhsh
    • 1
  • Peiman Shahbeigi-Roodposhti
    • 2
    • 3
  • Hasan Sadeghifar
    • 4
  • Richard A. Venditti
    • 5
  • Jesse S. Jur
    • 1
  1. 1.Department of Textile Engineering, Chemistry & ScienceNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  4. 4.Department of Wood and Paper ScienceIslamic Azad UniversitySari branchIran
  5. 5.Department of Forest BiomaterialsNorth Carolina State UniversityRaleighUSA

Personalised recommendations