Journal of Materials Science

, Volume 52, Issue 9, pp 4944–4956 | Cite as

Selective laser melting of ultra-high-strength TRIP steel: processing, microstructure, and properties

  • J. Sander
  • J. Hufenbach
  • M. Bleckmann
  • L. Giebeler
  • H. Wendrock
  • S. Oswald
  • T. Gemming
  • J. Eckert
  • U. Kühn
Original Paper


This paper presents results about the influence of the selective laser melting (SLM) process parameters on a FeCr4Mo1V1W8C1 (wt%) alloy regarding microstructure and mechanical behavior. Tailored parameter variation studies were performed to obtain crack-free and highly dense SLM parts. The microstructure was studied using scanning electron microscopy, X-ray diffraction, Auger electron spectroscopy, and scanning transmission electron microscopy. Additionally, the mechanical properties were investigated by compression and tensile tests. The obtained microstructure is composed of complex nanoscale carbides, retained austenite, and martensite. Caused by the fast directional cooling during SLM, a completely dendritic solidification aligned in building direction occurs. Non-equilibrium segregation leads to an orderly phase arrangement of complex carbides at the boundary of the dendrites surrounded by retained austenite and martensite in the center of the dendrites. A strong work hardening behavior was observed, based on an austenite-to-martensite phase transformation (TRIP effect). This effect accounts for the outstanding mechanical properties such as compression strength of 6000 MPa, a 0.2% tensile yield strength of 560 MPa, and an ultimate tensile strength of over 1000 MPa. These findings reveal that SLM is advantageous for the processing of ultra-high-strength FeCrMoVWC tool steel.


Carbide Austenite Martensite Selective Laser Melting Trip Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to H. Bußkamp, S. Donath, M. Frey, R. Keller, H. Merker, A. Voidel, and A. Voß for scientific support, technical assistance, and helpful discussions. This study was kindly supported by WIWeB (Erding). Additional support through the German Science Foundation (DFG) under the Leibniz Program (Grant EC 111/26-1) is gratefully acknowledged.


  1. 1.
    Bremen S, Meiners W, Diatlov A (2012) Selective laser melting. Laser Technol J 9(2):33–38CrossRefGoogle Scholar
  2. 2.
    Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL (2015) Review of selective laser melting: materials and applications. Phys Rev Appl. doi: 10.1063/1.4935926 Google Scholar
  3. 3.
    Rombouts M, Kruth JP, Froyen L, Mercelis P (2006) Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann Manuf Technol. doi: 10.1016/S0007-8506(07)60395-3 Google Scholar
  4. 4.
    Guan K, Wang Z, Gao M, Li X, Zeng X (2013) Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel. Mater Des. doi: 10.1016/j.matdes.2013.03.056 Google Scholar
  5. 5.
    Liu ZH, Zhang DQ, Chua CK, Leong KF (2013) Crystal structure analysis of M2 high speed steel parts produced by selective laser melting. Mater Charact. doi: 10.1016/j.matchar.2013.07.010 Google Scholar
  6. 6.
    Taha MA, Yousef AF, Gany KA, Sabour HA (2012) On selective laser melting of ultra high carbon steel: effect of scan speed and post heat treatment. Mater Wiss Werkst. doi: 10.1002/mawe.201200030 Google Scholar
  7. 7.
    Wright CS, Youseffi M, Akhtar SP, Childs T, Hauser C, Fox P (2006) Selective laser melting of prealloyed high alloy steel powder beds. MSF. doi: 10.4028/ Google Scholar
  8. 8.
    Lindemann C, Jahnke U, Moi M, Koch R (2012) In: 23th Annual international solid freeform fabrication symposium—an additive manufacturing conference, Austin, Texas, USA 6–8 AugGoogle Scholar
  9. 9.
    Bayer AM, Becherer BA (eds) (1989) ASM handbook: high-speed tool steels 16. ASM International, Materials ParkGoogle Scholar
  10. 10.
    Hufenbach J, Kohlar S, Kühn U, Giebeler L, Eckert J (2012) Microstructural and mechanical characterization of an ultra-high-strength Fe86.7Cr4.4Mo0.6V1.1W2.5C4.7 alloy. J Mater Sci. doi: 10.1007/s10853-011-5794-z Google Scholar
  11. 11.
    Gu D (2015) Laser additive manufacturing of high-performance materials. Springer, BerlinCrossRefGoogle Scholar
  12. 12.
    Sander J, Hufenbach J, Giebeler L, Wendrock H, Kühn U, Eckert J (2016) Microstructure and properties of FeCrMoVC tool steel produced by selective laser melting. Mater Des. doi: 10.1016/j.matdes.2015.09.148 Google Scholar
  13. 13.
    Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2(2):65–71CrossRefGoogle Scholar
  14. 14.
    Roisnel T, Rodriquez-Carvajal J (2001) WinPLOTR: a windows tool for powder diffraction pattern analysis. MSF 378(1):118–123CrossRefGoogle Scholar
  15. 15.
    Narendra B, Dahotre B (2008) Laser fabrication and machining of materials. Springer, New YorkGoogle Scholar
  16. 16.
    Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. doi: 10.1016/j.actamat.2016.02.014 Google Scholar
  17. 17.
    Ridley N, Stuart H, Zwell L (1969) Lattice parameters of Fe–C austenites at room temperature. Trans Metall Soc AIME 245(8):1834–1836Google Scholar
  18. 18.
    Dyson DJ, Holmes B (1970) Effect of alloying additions on the lattice parameter of austenite. J Iron Steel Inst 208(5):469–474Google Scholar
  19. 19.
    Cheng L, Böttger A, de Keijser T, Mittemeijer EJ (1990) Lattice parameters of iron-carbon and iron-nitrogen martensites and austenites. Scr Metall Mater. doi: 10.1016/0956-716X(90)90192-J Google Scholar
  20. 20.
    Butt AM, Offerman SE, Zhao L, Sietsma J, Van der Zwaag S, van Dijk NH, Wright JP (2005) Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater 53(20):5439–5447CrossRefGoogle Scholar
  21. 21.
    Karagöz S, Fischmeister HF, Andrén H-O, Guang-Jun C (1992) Microstructural changes during overtempering of high-speed steels. Metall Trans A. doi: 10.1007/BF02804359 Google Scholar
  22. 22.
    Page K, Li J, Savinelli R, Szumila HN, Zhang J, Stalick JK, Proffen T, Scott SL, Seshadri R (2008) Reciprocal-space and real-space neutron investigation of nanostructured Mo2C and WC. Solid State Sci. doi: 10.1016/j.solidstatesciences.2008.03.018 Google Scholar
  23. 23.
    Epicier T, Dubois J, Esnouf C, Fantozzi G, Convert P (1988) Neutron powder diffraction studies of transition metal hemicarbides M2C1−x—II. In situ high temperature study on W2C1−x and Mo2C1−x. Acta Metall. doi: 10.1016/0001-6160(88)90293-3 Google Scholar
  24. 24.
    Vegard L (1921) Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Phys. doi: 10.1007/BF01349680 Google Scholar
  25. 25.
    Rüssel M, Mottitschka T, Martin S, Krüger L, Kreuzer W (2013) Fatigue crack propagation and in situ observations in three tool steel alloys manufactured using a rapid solidification technique. J Mater Sci. doi: 10.1007/s10853-013-7327-4 Google Scholar
  26. 26.
    Rüssel M, Martin S, Krüger L, Kreuzer W (2012) High strain-rate behavior and transformation-induced plasticity of a high-strength FeCrMoVWC alloy manufactured by rapid solidification technique. Metall Trans A. doi: 10.1007/s11661-012-1180-y Google Scholar
  27. 27.
    Jacobi H, Schwerdtfeger K (1976) Dendrite morphology of steady state unidirectionally solidified steel. MTA. doi: 10.1007/BF02644078 Google Scholar
  28. 28.
    El-Bealy M, Thomas BG (1996) Prediction of dendrite arm spacing for low alloy steel casting processes. Metall Trans B. doi: 10.1007/BF02915668 Google Scholar
  29. 29.
    Porter DA, Easterling KE, Sherif M (2009) Phase transformations in metals and alloys, 3rd edn. Springer, BostonGoogle Scholar
  30. 30.
    Priester L (2012) Grain boundaries: from theory to engineering, vol 172. Springer Science & Business Media, BerlinGoogle Scholar
  31. 31.
    Totten GE (2007) Steel heat treatment: metallurgy and technologies, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  32. 32.
    Kühn U, Romberg J, Mattern N, Wendrock H, Eckert J (2010) Transformation-induced plasticity in Fe–Cr–V–C. J Mater Res. doi: 10.1557/JMR.2010.0052 Google Scholar
  33. 33.
    Davis JR (ed) (1998) Metals handbook desk edition: structure/property relationships in irons and steels, 2nd edn. ASM International, Materials ParkGoogle Scholar
  34. 34.
    Hirth JP, Cohen M (1970) On the strength-differential phenomenon in hardened steel. Metall Trans A 1(1):3–8Google Scholar
  35. 35.
    Stuart Keeler SD, Menachem Kimchi MS (2015) Advanced high-strength steels application guidelines V5. WorldAutoSteel, MiddletownGoogle Scholar
  36. 36.
    Tolosa I, Garciandía F, Zubiri F, Zapirain F, Esnaola A (2010) Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int J Adv Manuf Technol. doi: 10.1007/s00170-010-2631-5 Google Scholar
  37. 37.
    Facchini L, Vicente N, Lonardelli I, Magalini E, Robotti P, Molinari A (2010) Metastable austenite in 17-4 precipitation-hardening stainless steel produced by selective laser melting. Adv Eng Mater. doi: 10.1002/adem.200900259 Google Scholar
  38. 38.
    Rafi HK, Pal D, Patil N, Starr TL, Stucker BE (2014) Microstructure and mechanical behavior of 17-4 precipitation hardenable steel processed by selective laser melting. J Mater Eng Perform. doi: 10.1007/s11665-014-1226-y Google Scholar
  39. 39.
    Kempen K, Yasa E, Thijs L, Kruth J-P, van Humbeeck J (2011) Microstructure and mechanical properties of selective laser melted 18Ni-300 steel. Procedia Phys. doi: 10.1016/j.phpro.2011.03.033 Google Scholar
  40. 40.
    Jägle EA, Choi P-P, van Humbeeck J, Raabe D (2014) Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting. J Mater Res. doi: 10.1557/jmr.2014.204 Google Scholar
  41. 41.
    Sander J, Hufenbach J, Giebeler L, Bleckmann M, Eckert J, Kühn U (2017) Microstructure, mechanical behavior, and wear properties of FeCrMoVC steel prepared by selective laser melting and casting. Scr Mater. doi: 10.1016/j.scriptamat.2016.07.029 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Sander
    • 1
  • J. Hufenbach
    • 1
  • M. Bleckmann
    • 2
  • L. Giebeler
    • 1
  • H. Wendrock
    • 1
  • S. Oswald
    • 1
  • T. Gemming
    • 1
  • J. Eckert
    • 3
    • 4
  • U. Kühn
    • 1
  1. 1.IFW DresdenInstitute for Complex MaterialsDresdenGermany
  2. 2.Wehrwissenschaftliches Institut für Werk- und BetriebsstoffeErdingGermany
  3. 3.Erich Schmid Institute of Materials ScienceAustrian Academy of SciencesLeobenAustria
  4. 4.Department Materials PhysicsMontanuniversität LeobenLeobenAustria

Personalised recommendations