Journal of Materials Science

, Volume 52, Issue 9, pp 4894–4902 | Cite as

Dehydrogenation properties of ammonia borane–polyacrylamide nanofiber hydrogen storage composites

  • Krishna Kharel
  • Radhika Gangineni
  • Lauren Ware
  • Yang Lu
  • Evan K. Wujcik
  • Suying Wei
  • Özge Günaydın-Şen
Original Paper


The current investigation seeks to measure the thermal and vibrational response of ammonia borane (NH3BH3, AB)/polyacrylamide (PAM, M n ~ 150,000) composites in bulk and electrospun fiber forms. The hydrogen release and melting temperature profiles for the composites were found to be lower than pristine AB. The kinetic analysis of the first dehydrogenation peak with respect to the heating ramp rates showed that the corresponding activation energy (E a) revealed the greatest decrease for the electrospun fibers (~61 kJ/mol), as compared to the bulk composites (~95 kJ/mol) and the pristine AB (~133 kJ/mol). Overall, the nanofibers showed the greatest decrease in E a, suggesting improved kinetic behavior. In addition to the enhanced kinetic properties, thermal gravimetric analysis showed significantly reduced weight loss for the composites. We have hypothesized that this is due to the suppression of the unwanted boracic byproducts and NH3. The weight loss decreased from 57.8% (AB) to 21.8% (fibers). Fourier-transform infrared study shows the interaction between the AB and PAM indication for the mentioned improvements. Decomposition IR studies revealed the disruption of the bonds with the broadening of the peaks and the disappearance of B–H stretch due to the dehydrogenation. These results imply that the novel composites revealed tuned properties by confining the AB molecules within the polymer matrix, having major implications in potential hydrogen storage applications.


Dehydrogenation Hydrogen Storage Fiber Composite Thermal Gravimetric Analysis Nanofiber Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge Dan Rutman who helped acquire the SEM images at Lamar University. This research was supported by Welch Foundation (V-0004) and Lamar University Research Enhancement Grant (REG-420240).


  1. 1.
    Gasping for air: toxic pollutants continue to make millions sick and shorten lives (2011) Natural Resources Defense Council, p 1–4.
  2. 2.
    Ott K, Simpson L, Klebanoff L (2012) In: Program FCT, Energy OoEEaR, Energy USDo (eds) U.S. Department of Energy, USA, p 1–75.
  3. 3.
    Dodds PE, Staffell I, Hawkes AD et al (2015) Hydrogen and fuel cell technologies for heating: a review. Int J Hydrogen Energy 40:2065–2083. doi: 10.1016/j.ijhydene.2014.11.059 CrossRefGoogle Scholar
  4. 4.
    Chen P, Zhu M (2008) Recent progress in hydrogen storage. Mater Today 11:36–43. doi: 10.1016/S1369-7021(08)70251-7 CrossRefGoogle Scholar
  5. 5.
    Johnson SR, Anderson PA, Edwards PP et al (2005) Chemical activation of MgH2: a new route to superior hydrogen storage materials. Chem Commun 2823–2825. doi: 10.1039/B503085D
  6. 6.
    Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129. doi: 10.1126/science.1083440 CrossRefGoogle Scholar
  7. 7.
    Frueh S, Kellett R, Mallery C et al (2011) Pyrolytic decomposition of ammonia borane to boron nitride. Inorg Chem 50:783–792. doi: 10.1021/ic101020k CrossRefGoogle Scholar
  8. 8.
    Marder TB (2007) Will we soon be fueling our automobiles with ammonia–borane? Angew Chem 46:8116–8118. doi: 10.1002/anie.200703150 CrossRefGoogle Scholar
  9. 9.
    Kobayashi T, Hlova IZ, Singh NK, Pecharsky VK, Pruski M (2012) Solid-state NMR study of Li-assisted dehydrogenation of ammonia borane. Inorg Chem 51:4108–4115. doi: 10.1021/ic202368a CrossRefGoogle Scholar
  10. 10.
    Hu J, Chen Z, Li M, Zhou X, Lu H (2014) Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane. ACS Appl Mater Interfaces 6:13191–13200. doi: 10.1021/am503037k CrossRefGoogle Scholar
  11. 11.
    Wolf G, Baumann J, Baitalow F, Hoffmann FP (2000) Calorimetric process monitoring of thermal decomposition of B–N–H compounds. Thermochim Acta 343:19–25. doi: 10.1016/S0040-6031(99)00365-2 CrossRefGoogle Scholar
  12. 12.
    Bhunya S, Roy L, Paul A (2016) Mechanistic details of Ru–bis(pyridyl)borate complex catalyzed dehydrogenation of ammonia–borane: role of the pendant boron ligand in catalysis. ACS Catal 6:4068–4080. doi: 10.1021/acscatal.5b02616 CrossRefGoogle Scholar
  13. 13.
    Richard J, Cid SL, Rouquette J, van der Lee A, Bernard S, Haines J (2016) Pressure-induced insertion of ammonia borane in the siliceous zeolite, silicalite-1F. J Phys Chem C 120:9334–9340. doi: 10.1021/acs.jpcc.6b02134 CrossRefGoogle Scholar
  14. 14.
    Li SF, Tang ZW, Tan YB, Yu XB (2012) Polyacrylamide blending with ammonia borane: a polymer supported hydrogen storage composite. J Phys Chem C 116:1544–1549. doi: 10.1021/jp209234f CrossRefGoogle Scholar
  15. 15.
    Zhao J, Shi J, Zhang X et al (2010) A soft hydrogen storage material: poly(methyl acrylate)-confined ammonia borane with controllable dehydrogenation. Adv Mater 22:394–397. doi: 10.1002/adma.200902174 CrossRefGoogle Scholar
  16. 16.
    Nathanson AS, Ploszajski AR, Billing M et al (2015) Ammonia borane-polyethylene oxide composite materials for solid hydrogen storage. J Mater Chem A 3:3683–3691. doi: 10.1039/C4TA06657J CrossRefGoogle Scholar
  17. 17.
    Tang Z, Li S, Yang Z, Yu X (2011) Ammonia borane nanofibers supported by poly(vinyl pyrrolidone) for dehydrogenation. J Mater Chem 21:14616–14621. doi: 10.1039/C1JM12190A CrossRefGoogle Scholar
  18. 18.
    Denney MC, Pons V, Hebden TJ, Heinekey DM, Goldberg KI (2006) Efficient catalysis of ammonia borane dehydrogenation. J Am Chem Soc 128:12048–12049. doi: 10.1021/ja062419g CrossRefGoogle Scholar
  19. 19.
    Gangal AC, Kale P, Edla R, Manna J, Sharma P (2012) Study of kinetics and thermal decomposition of ammonia borane in presence of silicon nanoparticles. Int J Hydrogen Energy 37:6741–6748. doi: 10.1016/j.ijhydene.2012.01.017 CrossRefGoogle Scholar
  20. 20.
    Kumar D, Mangalvedekar HA, Mahajan SK (2014) Nano-nickel catalytic dehydrogenation of ammonia borane. Mater Renew Sustain Energy 3:1–7. doi: 10.1007/s40243-014-0023-8 CrossRefGoogle Scholar
  21. 21.
    Metin Ö, Özkar S (2009) Hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride using water-soluble polymer-stabilized cobalt(0) nanoclusters catalyst. Energy Fuels 23:3517–3526. doi: 10.1021/ef900171t CrossRefGoogle Scholar
  22. 22.
    Ma H, Na C (2015) Isokinetic temperature and size-controlled activation of ruthenium-catalyzed ammonia borane hydrolysis. ACS Catal 5:1726–1735. doi: 10.1021/cs5019524 CrossRefGoogle Scholar
  23. 23.
    Kim S-K, Kim T-J, Kim T-Y et al (2012) Tetraglyme-mediated synthesis of Pd nanoparticles for dehydrogenation of ammonia borane. Chem Commun 48:2021–2023. doi: 10.1039/C2CC15931G CrossRefGoogle Scholar
  24. 24.
    Glüer A, Förster M, Celinski VR, Schmedt auf der Günne J, Holthausen MC, Schneider S (2015) Highly active iron catalyst for ammonia borane dehydrocoupling at room temperature. ACS Catal 5:7214–7217. doi: 10.1021/acscatal.5b02406 CrossRefGoogle Scholar
  25. 25.
    Kumar R, Jagirdar BR (2013) B–H bond activation using an electrophilic metal complex: insights into the reaction pathway. Inorg Chem 52:28–36. doi: 10.1021/ic300390s CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Zhang J, Akins DL, Lee JW (2011) Effect of composition on dehydrogenation of mesoporous silica/ammonia borane nanocomposites. Ind Eng Chem Res 50:10024–10028. doi: 10.1021/ie200330x CrossRefGoogle Scholar
  27. 27.
    Paolone A, Palumbo O, Rispoli P, Cantelli R, Autrey T, Karkamkar A (2009) Absence of the structural phase transition in ammonia borane dispersed in mesoporous silica: evidence of novel thermodynamic properties. J Phys Chem C 113:10319–10321. doi: 10.1021/jp902341s CrossRefGoogle Scholar
  28. 28.
    Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128:7748–7749. doi: 10.1021/ja062085v CrossRefGoogle Scholar
  29. 29.
    Pant HR, Kim HJ, Joshi MK et al (2014) One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification. J Hazard Mater 264:25–33. doi: 10.1016/j.jhazmat.2013.10.066 CrossRefGoogle Scholar
  30. 30.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. doi: 10.1016/j.biotechadv.2010.01.004 CrossRefGoogle Scholar
  31. 31.
    Liao N, Unnithan AR, Joshi MK et al (2015) Electrospun bioactive poly(ε-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications. Colloids Surf A 469:194–201. doi: 10.1016/j.colsurfa.2015.01.022 CrossRefGoogle Scholar
  32. 32.
    Alipour J, Shoushtari AM, Kaflou A (2015) Ammonia borane confined by poly(methyl methacrylate)/multiwall carbon nanotube nanofiber composite, as a polymeric hydrogen storage material. J Mater Sci 50:3110–3117. doi: 10.1007/s10853-015-8871-x CrossRefGoogle Scholar
  33. 33.
    Sepehri S, Garcia BB, Cao G (2008) Tuning dehydrogenation temperature of carbon-ammonia borane nanocomposites. J Mater Chem 18:4034–4037. doi: 10.1039/B808511K CrossRefGoogle Scholar
  34. 34.
    Lee K-S, Jung Kweon J, Oh I-H, Eui Lee C (2012) Polymorphic phase transition and thermal stability in squaric acid (H2C4O4). J Phys Chem Solid 73:890–895. doi: 10.1016/j.jpcs.2012.02.013 CrossRefGoogle Scholar
  35. 35.
    Starink MJ (1996) A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochim Acta 288:97–104. doi: 10.1016/S0040-6031(96)03053-5 CrossRefGoogle Scholar
  36. 36.
    Choi YJ, Xu Y, Shaw WJ, Rönnebro ECE (2012) Hydrogen storage properties of new hydrogen-rich BH3NH3-metal hydride (TiH2, ZrH2, MgH2, and/or CaH2) composite systems. J Phys Chem C 116:8349–8358. doi: 10.1021/jp210460w CrossRefGoogle Scholar
  37. 37.
    Kaswan A, Kumari V, Patidar D, Saxena NS, Sharmadoi K (2013) Kinetics of phase transformations and thermal stability of GexSe70Sb30−x (x = 5, 10, 15, 20) chalcogenide glasses. N J Glass Ceram 3:99–103. doi: 10.4236/njgc.2013.34016 CrossRefGoogle Scholar
  38. 38.
    Rassat SD, Aardahl CL, Autrey T, Smith RS (2010) Thermal stability of ammonia borane: a case study for exothermic hydrogen storage materials. Energy Fuels 24:2596–2606. doi: 10.1021/ef901430a CrossRefGoogle Scholar
  39. 39.
    Yang M-H (1998) The two-stages thermal degradation of polyacrylamide. Polym Test 17:191–198. doi: 10.1016/S0142-9418(97)00036-6 CrossRefGoogle Scholar
  40. 40.
    Kharel K, Gangineni R, Suvvari R, Ware L, Wei S, Günaydın-Şen Ö (2016) Low temperature phase transition properties of ammonia-borane polyacrylamide composites (in preparation)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryLamar UniversityBeaumontUSA
  2. 2.Dan F. Smith Department of Chemical EngineeringLamar UniversityBeaumontUSA
  3. 3.Materials Engineering and Nanosensor [MEAN] Laboratory, Department of Chemical and Biological EngineeringThe University of AlabamaTuscaloosaUSA

Personalised recommendations