Journal of Materials Science

, Volume 52, Issue 8, pp 4727–4741 | Cite as

Structural and catalytic properties of Au/MgO-type catalysts prepared in aqueous or methanol phase: application in the CO oxidation reaction

  • Willinton Y. Hernández
  • Funda Aliç
  • Sara Navarro-Jaen
  • Miguel A. Centeno
  • Pieter Vermeir
  • Pascal Van Der Voort
  • An Verberckmoes
Original Paper


Au/MgO and Au/Mg(OH)2-type catalysts for CO oxidation reaction were prepared by using two different synthesis methods in presence of either an aqueous or methanol phase. The influence of the porous and morphological properties of the starting magnesium oxide supports was analyzed and correlated with the catalytic performances of the final gold-supported catalysts. It was found that the deposition of gold in the presence of methanol as a solvent avoids the total rehydration of the MgO support and maintains the textural and morphological properties of the starting oxides. The support synthesized by a surfactant-assisted hydrothermal route, having a combined meso-macroporous structure (i.e., MgO-P) showed a positive influence on the CO oxidation reaction as it favored the dispersion of gold and the surface-to-gas phase interaction during the catalytic process.


Gold Nanoparticles Brucite Gold Catalyst Other Hand XANES Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially funded by the IWT—Belgium. The authors would like to thank Sander Clerick and Jonas Billet for their valuable help with the SEM images. A special thank goes to Dr. Anastasios Kambolis (PSI-Switzerland) for the XAS measurements at the Swiss-Norwegian Beam Line (SNBL)—ESRF.


  1. 1.
    Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36(1):153–166. doi: 10.1016/s0920-5861(96)00208-8 CrossRefGoogle Scholar
  2. 2.
    Hernandez WY, Romero-Sarria F, Centeno MA, Odriozola JA (2010) In situ characterization of the dynamic gold-support interaction over ceria modified Eu3+. Influence of the oxygen vacancies on the CO oxidation reaction. J Phys Chem C 114(24):10857–10865. doi: 10.1021/jp1013225 CrossRefGoogle Scholar
  3. 3.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts-”inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197(1):113–122. doi: 10.1006/jcat.2000.3069 CrossRefGoogle Scholar
  4. 4.
    Ramirez Reina T, Ivanova S, Jose Delgado J, Ivanov I, Idakiev V, Tabakova T, Angel Centeno M, Antonio Odriozola J (2014) Viability of Au/CeO2-ZnO/Al2O3 catalysts for pure hydrogen production by the water-gas shift reaction. ChemCatChem 6(5):1401–1409. doi: 10.1002/cctc.201300992 Google Scholar
  5. 5.
    Rodriguez JA, Ramirez PJ, Giacomo Asara G, Vines F, Evans J, Liu P, Ricart JM, Illas F (2014) Charge polarization at a Au-TiC interface and the generation of highly active and selective catalysts for the low-temperature water-gas shift reaction. Angew Chem Int Edit 53(42):11270–11274. doi: 10.1002/anie.201407208 CrossRefGoogle Scholar
  6. 6.
    Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Edit 47(15):2884–2887. doi: 10.1002/anie.200705828 CrossRefGoogle Scholar
  7. 7.
    Laguna OH, Hernandez WY, Arzamendi G, Gandia LM, Centeno MA, Odriozola JA (2014) Gold supported on CuOx/CeO2 catalyst for the purification of hydrogen by the CO preferential oxidation reaction (PROX). Fuel 118:176–185. doi: 10.1016/j.fuel.2013.10.072 CrossRefGoogle Scholar
  8. 8.
    Laguna OH, Sarria FR, Centeno MA, Odriozola JA (2010) Gold supported on metal-doped ceria catalysts (M = Zr, Zn and Fe) for the preferential oxidation of CO (PROX). J Catal 276(2):360–370. doi: 10.1016/j.jcat.2010.09.027 CrossRefGoogle Scholar
  9. 9.
    Ramirez Reina T, Megias-Sayago C, Perez Florez A, Ivanova S, Angel Centeno M, Antonio Odriozola J (2015) H2 oxidation as criterion for PrOx catalyst selection: examples based on Au-Co-O-x-supported systems. J Catal 326:161–171. doi: 10.1016/j.jcat.2015.03.015 CrossRefGoogle Scholar
  10. 10.
    Bion N, Epron F, Moreno M, Marino F, Duprez D (2008) Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks. Top Catal 51(1–4):76–88. doi: 10.1007/s11244-008-9116-x CrossRefGoogle Scholar
  11. 11.
    Fonseca J, Royer S, Bion N, Pirault-Roy L, Rangel MdC, Duprez D, Epron F (2012) Preferential CO oxidation over nanosized gold catalysts supported on ceria and amorphous ceria-alumina. Appl Catal B 128:10–20. doi: 10.1016/j.apcatb.2012.03.037 CrossRefGoogle Scholar
  12. 12.
    Chen MS, Goodman DW (2008) Catalytically active gold on ordered titania supports. Chem Soc Rev 37(9):1860–1870. doi: 10.1039/b707318f CrossRefGoogle Scholar
  13. 13.
    Chen MS, Goodman DW (2006) Structure-activity relationships in supported Au catalysts. Catal Today 111(1–2):22–33. doi: 10.1016/j.cattod.2005.10.007 CrossRefGoogle Scholar
  14. 14.
    Avellaneda RS, Ivanova S, Sanz O, Romero-Sarria F, Centeno MA, Odriozola JA (2009) Ionic liquid templated TiO2 nanoparticles as a support in gold environmental catalysis. Appl Catal B 93(1–2):140–148. doi: 10.1016/j.apcatb.2009.09.023 CrossRefGoogle Scholar
  15. 15.
    Molina LM, Hammer B (2005) Some recent theoretical advances in the understanding of the catalytic activity of Au. Appl Catal A 291(1–2):21–31. doi: 10.1016/j.apcata.2005.01.050 CrossRefGoogle Scholar
  16. 16.
    Comotti M, Li W-C, Spliethoff B, Schüth F (2006) Support effect in high activity gold catalysts for CO oxidation. J Am Chem Soc 128(3):917–924. doi: 10.1021/ja0561441 CrossRefGoogle Scholar
  17. 17.
    Haruta M (2007) New generation of gold catalysts: nanoporous foams and tubes-is unsupported gold catalytically active? ChemPhysChem 8(13):1911–1913. doi: 10.1002/cphc.200700325 CrossRefGoogle Scholar
  18. 18.
    Okumura M, Coronado JM, Soria J, Haruta M, Conesa JC (2001) EPR study of CO and O2 interaction with supported Au catalysts. J Catal 203(1):168–174. doi: 10.1006/jcat.2001.3307 CrossRefGoogle Scholar
  19. 19.
    Weiher N, Bus E, Delannoy L, Louis C, Ramaker DE, Miller JT, van Bokhoven JA (2006) Structure and oxidation state of gold on different supports under various CO oxidation conditions. J Catal 240(2):100–107. doi: 10.1016/j.jcat.2006.03.010 CrossRefGoogle Scholar
  20. 20.
    Okumura M, Nakamura S, Tsubota S, Nakamura T, Azuma M, Haruta M (1998) Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2. Catal Lett 51(1–2):53–58. doi: 10.1023/a:1019020614336 CrossRefGoogle Scholar
  21. 21.
    Costello CK, Yang JH, Law HY, Wang Y, Lin JN, Marks LD, Kung MC, Kung HH (2003) On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3. Appl Catal A 243(1):15–24. doi: 10.1016/S0926-860X(02)00533-1 CrossRefGoogle Scholar
  22. 22.
    Kung HH, Kung MC, Costello CK (2003) Supported Au catalysts for low temperature CO oxidation. J Catal 216(1–2):425–432. doi: 10.1016/S0021-9517(02)00111-2 CrossRefGoogle Scholar
  23. 23.
    Cunningham DAH, Vogel W, Haruta M (1999) Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)(2) catalyst. Catal Lett 63(1–2):43–47. doi: 10.1023/a:1019088131252 CrossRefGoogle Scholar
  24. 24.
    Cunningham DAH, Vogel W, Kageyama H, Tsubota S, Haruta M (1998) The relationship between the structure and activity of nanometer size gold when supported on Mg(OH)2. J Catal 177(1):1–10. doi: 10.1006/jcat.1998.2050 CrossRefGoogle Scholar
  25. 25.
    Vogel W, Cunningham DAH, Tanaka K, Haruta M (1996) Structural analysis of Au/Mg(OH)2 during deactivation by Debye function analysis. Catal Lett 40(3–4):175–181. doi: 10.1007/bf00815279 CrossRefGoogle Scholar
  26. 26.
    Jia C-J, Liu Y, Bongard H, Schueth F (2010) Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH)2 and MgO. J. Am. Chem. Soc. 132(5):1520–1522. doi: 10.1021/ja909351e CrossRefGoogle Scholar
  27. 27.
    Gavril D (2015) CO oxidation on nanosized Au/Al2O3 by surface hydroxyl groups and in the absence of O2, studied by inverse gas chromatography. Catal Today 244:36–46. doi: 10.1016/j.cattod.2014.08.022 CrossRefGoogle Scholar
  28. 28.
    D-e Jiang, Overbury SH, Dai S (2011) Interaction of gold clusters with a hydroxylated surface. J Phys Chem Lett 2(10):1211–1215. doi: 10.1021/jz200420t CrossRefGoogle Scholar
  29. 29.
    Jia CY, Fan WL (2015) A theoretical study of O2 activation by the Au-7-cluster on Mg(OH)2: roles of surface hydroxyls and hydroxyl defects. Phys Chem Chem Phys 17(45):30736–30743. doi: 10.1039/c5cp05591a CrossRefGoogle Scholar
  30. 30.
    Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G (2013) Au/3DOM La0.6Sr0.4MnO3: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. J Catal 305:146–153. doi: 10.1016/j.jcat.2013.04.025 CrossRefGoogle Scholar
  31. 31.
    Xie S, Dai H, Deng J, Liu Y, Yang H, Jiang Y, Tan W, Ao A, Guo G (2013) Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. Nanoscale 5(22):11207–11219. doi: 10.1039/c3nr04126c CrossRefGoogle Scholar
  32. 32.
    Xie S, Dai H, Deng J, Yang H, Han W, Arandiyan H, Guo G (2014) Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene. J Hazard Mater 279:392–401. doi: 10.1016/j.jhazmat.2014.07.033 CrossRefGoogle Scholar
  33. 33.
    Liu Z, Yang Y, Mi J, Tan X, Lv C (2013) Dual-templating fabrication of three-dimensionally ordered macroporous ceria with hierarchical pores and its use as a support for enhanced catalytic performance of preferential CO oxidation. Int J Hydrog Energy 38(11):4445–4455. doi: 10.1016/j.ijhydene.2013.01.118 CrossRefGoogle Scholar
  34. 34.
    Rezaei M, Khajenoori M, Nematollahi B (2011) Preparation of nanocrystalline MgO by surfactant assisted precipitation method. Mater Res Bull 46(10):1632–1637. doi: 10.1016/j.materresbull.2011.06.007 CrossRefGoogle Scholar
  35. 35.
    Estrada M, Costa VV, Beloshapkin S, Fuentes S, Stoyanov E, Gusevskaya EV, Simakov A (2014) Aerobic oxidation of benzyl alcohol in methanol solutions over Au nanoparticles: Mg(OH)2 vs MgO as the support. Appl Catal A 473:96–103. doi: 10.1016/j.apcata.2013.12.039 CrossRefGoogle Scholar
  36. 36.
    Ivanova S, Pitchon V, Zimmermann Y, Petit C (2006) Preparation of alumina supported gold catalysts: influence of washing procedures, mechanism of particles size growth. Appl Catal A 298:57–64. doi: 10.1016/j.apcata.2005.09.020 CrossRefGoogle Scholar
  37. 37.
    Wang Z, Xu C, Wang H (2014) A facile preparation of highly active Au/MgO catalysts for aerobic oxidation of benzyl alcohol. Catal Lett 144(11):1919–1929. doi: 10.1007/s10562-014-1344-z CrossRefGoogle Scholar
  38. 38.
    Ding Y, Zhang GT, Wu H, Hai B, Wang LB, Qian YT (2001) Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chem Mater 13(2):435–440. doi: 10.1021/cm000607e CrossRefGoogle Scholar
  39. 39.
    Lv Y, Zhang Z, Lai Y, Li J, Liu Y (2011) Formation mechanism for planes (011) and (001) oriented Mg(OH)2 films electrodeposited on SnO2 coating glass. CrystEngComm 13(11):3848–3851. doi: 10.1039/c0ce00728e CrossRefGoogle Scholar
  40. 40.
    Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41(1–3):207–219. doi: 10.1016/S0920-5861(98)00050-9 CrossRefGoogle Scholar
  41. 41.
    Li W-C, Lu A-H, Weidenthaler C, Schüth F (2004) Hard-templating pathway to create mesoporous magnesium oxide. Chem Mater 16(26):5676–5681. doi: 10.1021/cm048759n CrossRefGoogle Scholar
  42. 42.
    Wang G, Zhang L, Dai H, Deng J, Liu C, He H, Au CT (2008) P123-assisted hydrothermal synthesis and characterization of rectangular parallelepiped and hexagonal prism single-crystalline MgO with three-dimensional wormholelike mesopores. Inorg Chem 47(10):4015–4022. doi: 10.1021/ic7015462 CrossRefGoogle Scholar
  43. 43.
    Ivanova S, Petit C, Pitchon V (2004) A new preparation method for the formation of gold nanoparticles on an oxide support. Appl Catal A 267(1–2):191–201. doi: 10.1016/j.apcata.2004.03.004 CrossRefGoogle Scholar
  44. 44.
    Radha AV, Vishnu Kamath P, Subbanna GN (2003) Disorder in layered hydroxides: synthesis and DIFFaX simulation studies of Mg(OH)2. Mater Res Bull 38(5):731–740. doi: 10.1016/S0025-5408(03)00070-9 CrossRefGoogle Scholar
  45. 45.
    Carabineiro SAC, Bogdanchikova N, Pestryakov A, Tavares PB, Fernandes LSG, Figueiredo JL (2011) Gold nanoparticles supported on magnesium oxide for CO oxidation. Nanoscale Res Lett. doi: 10.1186/1556-276x-6-435 Google Scholar
  46. 46.
    Liu M, Xu J, Cheng B, Ho W, Yu J (2015) Synthesis and adsorption performance of Mg(OH)2 hexagonal nanosheet-graphene oxide composites. Appl Surf Sci 332:121–129. doi: 10.1016/j.apsusc.2015.01.121 CrossRefGoogle Scholar
  47. 47.
    Pang H, Ning G, Gong W, Ye J, Lin Y (2011) Direct synthesis of hexagonal Mg(OH)2 nanoplates from natural brucite without dissolution procedure. Chem Commun 47(22):6317–6319. doi: 10.1039/c1cc10279f CrossRefGoogle Scholar
  48. 48.
    Guzman J, Gates BC (2002) Simultaneous presence of cationic and reduced gold in functioning MgO-supported CO oxidation catalysts: evidence from X-ray absorption spectroscopy. J Phys Chem B 106(31):7659–7665. doi: 10.1021/jp020584m CrossRefGoogle Scholar
  49. 49.
    Guzman J, Gates BC (2003) Oxidation states of gold in MgO-supported complexes and clusters: characterization by X-ray absorption spectroscopy and temperature-programmed oxidation and reduction. J Phys Chem B 107(10):2242–2248. doi: 10.1021/jp026976a CrossRefGoogle Scholar
  50. 50.
    van Bokhoven JA, Miller JT (2007) Electronic and geometric structures of small gold metal particles: particles size effects and the relationship to catalytic activity. In: Hedman B, Painetta P (eds) X-ray absorption fine structure-XAFS13, vol 882. AIP conference proceedings, pp 582–584Google Scholar
  51. 51.
    Benfield RE, Grandjean D, Kroll M, Pugin R, Sawitowski T, Schmid G (2001) Structure and bonding of gold metal clusters, colloids, and nanowires studied by EXAFS, XANES, and WAXS. J Phys Chem B 105(10):1961–1970. doi: 10.1021/jp0028812 CrossRefGoogle Scholar
  52. 52.
    Qian K, Luo L, Bao H, Hua Q, Jiang Z, Huang W (2013) Catalytically active structures of SiO2-supported Au nanoparticles in low-temperature CO oxidation. Catal Sci Technol 3(3):679–687. doi: 10.1039/c2cy20481a CrossRefGoogle Scholar
  53. 53.
    Brown MA, Carrasco E, Sterrer M, Freund H-J (2010) Enhanced stability of gold clusters supported on hydroxylated MgO(001) surfaces. J Am Chem Soc 132(12):4064–4065. doi: 10.1021/ja100343m CrossRefGoogle Scholar
  54. 54.
    Brown MA, Fujimori Y, Ringleb F, Shao X, Stavale F, Nilius N, Sterrer M, Freund H-J (2011) Oxidation of Au by surface OH: nucleation and electronic structure of gold on hydroxylated MgO(001). J Am Chem Soc 133(27):10668–10676. doi: 10.1021/ja204798z CrossRefGoogle Scholar
  55. 55.
    Sterrer M, Freund H-J (2013) Towards realistic surface science models of heterogeneous catalysts: influence of support hydroxylation and catalyst preparation method. Catal Lett 143(5):375–385. doi: 10.1007/s10562-013-0987-5 CrossRefGoogle Scholar
  56. 56.
    Wang L, Yang D, Wang J, Zhu Z, Zhou K (2013) Ambient temperature CO oxidation over gold nanoparticles (14 nm) supported on Mg(OH)2 nanosheets. Catal Commun 36:38–42. doi: 10.1016/j.catcom.2013.02.017 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Willinton Y. Hernández
    • 1
  • Funda Aliç
    • 1
  • Sara Navarro-Jaen
    • 2
  • Miguel A. Centeno
    • 2
  • Pieter Vermeir
    • 3
  • Pascal Van Der Voort
    • 1
  • An Verberckmoes
    • 4
  1. 1.Department of Inorganic and Physical Chemistry, Center for Ordered Materials, Organometallics & Catalysis (COMOC)Ghent UniversityGhentBelgium
  2. 2.Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de SevillaCentro Mixto Universidad de Sevilla-CSICSevilleSpain
  3. 3.Laboratory for Chemical Analyses (LCA), Department of Applied BiosciencesGhent UniversityGhentBelgium
  4. 4.Industrial Catalysis and Adsorption Technology (INCAT), Department of Chemical Engineering and Technical ChemistryGhent UniversityGhentBelgium

Personalised recommendations