Advertisement

Journal of Materials Science

, Volume 52, Issue 8, pp 4608–4620 | Cite as

Evaluation of morphology and photoluminescent properties of PbMoO4 crystals by ultrasonic amplitude

  • G. M. Gurgel
  • L. X. Lovisa
  • O. L. A. Conceição
  • M. S. Li
  • E. Longo
  • C. A. Paskocimas
  • F. V. Motta
  • M. R. D. Bomio
Original Paper

Abstract

Lead molybdate (PbMoO4) crystals were synthesized by the facile sonochemical method at 20 kHz frequency with a variable ultrasonic amplitude and synthesis time. These crystals were structurally characterized by X-ray diffraction (XRD). Field emission scanning electron microscopy images were employed to observe the evolution of the crystal growth process. XRD patterns indicate that these crystals have a scheelite-type tetragonal structure. The growth mechanism of PbMoO4 crystal was proposed to explain the development stages starting with precipitates formed by particles with disordered growth to form dendritic structures. The effect of the amplitude processing applied was rather significant for the size range of the particles produced. The optical properties were analyzed by ultraviolet–Visible (UV–Vis) absorption spectroscopy and photoluminescence (PL) measurements. The spectrum shows that the sample has a typical green emission. The origin of the PL emission spectrum of the metal molybdates might be ascribed to the charge-transfer transitions within [MoO4] clusters.

Keywords

Synthesis Time Sonochemical Method PbMoO4 Oriented Attachment Molybdic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We dedicate in particular the present article to O. L. A. Conceição, who is no longer among us, but who left us a cooperation of great value for the accomplishment in this work. The authors gratefully acknowledge the financial support of the Brazilian governmental research funding agencies CAPES, CNPq 402127/2013-7, FAPESP, and INCTMN.

Supplementary material

10853_2016_705_MOESM1_ESM.docx (294 kb)
Supplementary Fig. 1 (DOCX 293 kb)

References

  1. 1.
    Araújo VD, Tranquilin RL, Motta FV, Paskocimas CA, Bernardi MIB, Cavalcante LS, Andres J, Longo E, Bomio MRD (2014) Effect of polyvinyl alcohol on the shape, photoluminescence and photocatalytic properties of PbMoO4 microcrystals. Mater Sci Semicond Process 26:425–430CrossRefGoogle Scholar
  2. 2.
    Zhiyong Y, Chaonan D, Ruiying Q, Lijin X, Aihua Z (2015) Photocatalytic degradation of methyl orange by PbXO4 (X = Mo, W). J Colloid Interface Sci 438:323–331CrossRefGoogle Scholar
  3. 3.
    Danevich FA et al (2010) Feasibility study of PbWO4 and PbMoO4 crystal scintillators for cryogenic rare events experiments. Nucl Instrum Methods Phys Res A 622:608–613CrossRefGoogle Scholar
  4. 4.
    Guo C, Xu J, Wang S, Li L, Zhang Y, Li X (2012) Facile synthesis and photocatalytic application of hierarchical mesoporous Bi2MoO6 nanosheet-based microspheres. Cryst Eng Comm 14:3602–3608CrossRefGoogle Scholar
  5. 5.
    Duan FZ, Yan C, Ming Q (2011) Enhanced photocatalytic activity of bismuth molybdate via hybridization with carbon. Mater Lett 65:191–193CrossRefGoogle Scholar
  6. 6.
    Wang L, Tang H, Tian Y (2016) Carbon-shell-decorated p-semiconductor PbMoO4 nanocrystals for efficient and stable photocathode of photoelectrochemical water reduction. J Power Sources 319:210–218CrossRefGoogle Scholar
  7. 7.
    Skibiński T, Kaczmarek SM, Leniec G, Tsuboi T, Nakai Y, Berkowski M, Kowalski Z, Huang W (2014) Magnetic and optical properties of Co-doped PbMoO4 single crystals. J Cryst Growth 401:802–806CrossRefGoogle Scholar
  8. 8.
    Hernández-Uresti DB, Martínez-de la Cruz A, Aguilar-Garib JA (2013) Photocatalytic activity of PbMoO4 molybdate synthesized by microwave method. Catal Today 212:70–74CrossRefGoogle Scholar
  9. 9.
    Sczancoski JC, Bomio MDR, Cavalcante LS, Joya MR, Pizani PS, Varela JA, Longo E, Li MS, Andrés JA (2009) Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal. J Phys Chem C 113:5812CrossRefGoogle Scholar
  10. 10.
    Dong FQ, Wu QS (2008) Synthesis of homogeneous bunched lead molybdate nanobelts in large scale via vertical SLM system at room temperature. Appl Phys A Mater Sci Process 91:161CrossRefGoogle Scholar
  11. 11.
    Jia S, Zheng H, Sang H, Zhang W, Zhang H, Liao L, Wang J (2013) Self-assembly of KxWO3 nanowires into nanosheets by an oriented attachment mechanism. ACS Appl Mater Interfaces 5:10346–10351CrossRefGoogle Scholar
  12. 12.
    Hernández-Urestia DB, Martínez-de la Cruz A, Torres-Martínez LM (2016) Photocatalytic degradation of organic compounds by PbMoO4 synthesized by a microwave-assisted solvothermal method. Ceram Int 42:3096–3103CrossRefGoogle Scholar
  13. 13.
    De Yoreo JJ, Vekilov P (2003) Principles of crystal nucleation and growth, Chapter 3. In: Dove PM (ed) Biomineralization. Mineralogical Society of America, Washington, p 57Google Scholar
  14. 14.
    Cavalcante LS, Sczancokis JC, Tranquilin RL, Varela JA, Longo E, Orlandi MO (2009) Growth mechanism of octahedron-like BaMoO4 microcrystals processed in microwave-hydrothermal: experimental observations and computational modeling. Particuology 7:353–362CrossRefGoogle Scholar
  15. 15.
    Bordui P (1987) Growth of large single crystals from aqueous solution: a review. J Cryst Growth 85:199CrossRefGoogle Scholar
  16. 16.
    Cui C et al (2007) Unique photoluminescence properties of highly crystallized BaMoO4 film prepared by chemical reaction. Mater Lett 61:4525–4527CrossRefGoogle Scholar
  17. 17.
    Zhang Y et al (2005) Synthesis of crystalline SrMoO4 nanowires from polyoxometalates. Solid State Commun 133:759–763CrossRefGoogle Scholar
  18. 18.
    Zhang G et al (2006) Preparation, structural and optical properties of AWO4 (A = Ca, Ba, Sr) nanofilms. Mater Sci Eng, B 128:254–259CrossRefGoogle Scholar
  19. 19.
    Errandonea D, Manjón FJ (2008) Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Prog Mater Sci 53:711–773CrossRefGoogle Scholar
  20. 20.
    Tyagi M et al (2008) New observations on the luminescence of lead molybdate crystals. J Lumin 128:22–26CrossRefGoogle Scholar
  21. 21.
    Piwowarska D, Kaczmarek SM, Berkowski M (2008) Dielectric, optical and EPR studies of PbMoO4 single crystals pure and doped with cobalt ions. J Non-Cryst Solids 354:4437–4442CrossRefGoogle Scholar
  22. 22.
    Sangeeta DG et al (2006) Non-stoichiometry-induced cracking in PbMoO4 crystals. J Cryst Growth 296:81–85CrossRefGoogle Scholar
  23. 23.
    Yang L, Wang Y, Wang X, Han G (2013) Synthesis of PbMoO4 nanorods by a simple sonochemical method. J Ceram Soc Jpn 121:745–748CrossRefGoogle Scholar
  24. 24.
    Bhanvase BA, Darda NS, Veerkar NC, Shende AS, Satpute SR, Sonawane SH (2015) Ultrasound assisted synthesis of PANI/ZnMoO4 nanocomposite for simultaneous improvement in anticorrosion, physico-chemical properties and its application in gas sensing. Ultrason Sonochem 24:87–97CrossRefGoogle Scholar
  25. 25.
    Seeharaja P, Boonchomb B, Charoonsukc P, Kim-Lohsoontornd P, Vittayakorna N (2013) Barium zirconate titanate nanoparticles synthesized by the sonochemical method. Ceram Int 39:S559–S562CrossRefGoogle Scholar
  26. 26.
    Zhang J, Li L, Zi W, Guo N, Zou L, Gan S, Ji G (2014) Self-assembled CaMoO4 and CaMoO4: Eu3+ hierarchical superstructures: Facile sonochemical route synthesis and tunable luminescent properties. J Phys Chem Solids 75:878–887CrossRefGoogle Scholar
  27. 27.
    Marques VS, Cavalcante LS, Sczancoski JC, Alcântara AFP, Orlandi MO, Moraes E, Longo E, Varela JA, Siu Li M, Santos MRMC (2010) Effect of different solvent ratios (water/ethylene glycol) on the growth process of CaMoO4 crystals and their optical properties. Cryst Growth Des 10:4752CrossRefGoogle Scholar
  28. 28.
    Cameirão A, David R, Espitalier F, Gruy F (2008) Effect of precipitation conditions on the morphology of strontium molybdate agglomerates. J Cryst Growth 310:4152–4162CrossRefGoogle Scholar
  29. 29.
    Bomio MRD, Cavalcante LS, Almeida MAP, Tranquilin RL, Batista NC, Pizani PS, Siu Li M, Andres E, Longo E (2013) Structural refinement, growth mechanism, infrared/Raman spectroscopies and photoluminescence properties of PbMoO4 crystals. Polyhedron 50:532–545CrossRefGoogle Scholar
  30. 30.
    Penn RL, Banfield JF (1998) Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281:969–971CrossRefGoogle Scholar
  31. 31.
    Yang F, Liu Y, Lu Y, Chen H, Zhang D, Wu H (2014) Morphology and photoluminescence properties of KSm(MoO4)2 microcrystals by a molten salt method. J Mater Sci 25:3608–3613Google Scholar
  32. 32.
    Colfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed 42:2350CrossRefGoogle Scholar
  33. 33.
    Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326CrossRefGoogle Scholar
  34. 34.
    Tian Y et al (2012) Ionic liquid-assisted hydrothermal synthesis of dendrite-like NaY(MoO4)2:Tb3+ phosphor. Phys B 407:2556–2559CrossRefGoogle Scholar
  35. 35.
    Cheng Y, Wang Y, Chen D, Bao F (2005) Evolution of single crystalline dendrites from nanoparticles through oriented attachment. J Phys Chem B 109:794–798CrossRefGoogle Scholar
  36. 36.
    Yang J, Lu C, Su H, Ma J, Cheng H, Qi L (2008) Morphological and structural modulation of PbWO4 crystals directed by dextrans. Nanotechnology 19:035608CrossRefGoogle Scholar
  37. 37.
    Sczancoski JC, Cavalcante LS, Marana NL, Silva RO, Tranquilin RL, Joya MR, Pizani PS, Varela JA, Sambrano JR, Li MS, Longo E, Andrés J (2010) Electronic structure and optical properties of BaMoO4 powders. Curr Appl Phys 10:614–624CrossRefGoogle Scholar
  38. 38.
    Kubelka P, Munk F (1931) Ein Beitrag Zur Optik der Farbanstriche. Z fur tech Phys 12:593–601Google Scholar
  39. 39.
    Cavalcante LS et al (2013) A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron 54:13–25CrossRefGoogle Scholar
  40. 40.
    Efendiev S, Darvishov N, Shakhdgan S, Gavryushin V, Raciukaitis G, Puzonas G, Kazlauskas A (2006) Two-phonon spectroscopy of PbMoO4 single crystals. Phys Status Solidi B 156:697CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • G. M. Gurgel
    • 1
  • L. X. Lovisa
    • 1
  • O. L. A. Conceição
    • 1
  • M. S. Li
    • 2
  • E. Longo
    • 3
  • C. A. Paskocimas
    • 1
  • F. V. Motta
    • 1
  • M. R. D. Bomio
    • 1
  1. 1.Department of Materials EngineeringFederal University of Rio Grande do NorteNatalBrazil
  2. 2.IFSCUSPSão CarlosBrazil
  3. 3.LIEC, IQUNESPAraraquaraBrazil

Personalised recommendations