Journal of Materials Science

, Volume 52, Issue 8, pp 4244–4252 | Cite as

Microstructure and strength of AlN–SiC interface studied by synchrotron X-rays

  • T. S. ArgunovaEmail author
  • M. Yu. Gutkin
  • K. D. Shcherbachev
  • J. H. Je
  • J. -H. Lim
  • O. P. Kazarova
  • E. N. Mokhov
Interfaces and Intergranular Boundaries


Bulk AlN crystals grown by sublimation on SiC substrates exhibit relatively high dislocation densities. The kind of defect formation at early growth stages influences the structural quality of the grown crystals. In this work, the dislocation distribution near to the interface is understood through investigation of thin (≤1.5 mm) continuous (non-cracked) freestanding crystals obtained in one process with the evaporation of the substrates. The AlN specimens were characterized using synchrotron radiation imaging techniques. We revealed by triple-axis X-ray diffraction study that, near to the former interface, randomly distributed dislocations configured to form boundaries between \(\sim \)0.02\(^{\circ }\) misoriented sub-grains (from [0001] direction). Threading dislocation structure similar to that in epitaxial GaN films was not detected. To explain these observations, a theoretical model of misfit stress relaxation near the interface is suggested.


Surface Step Curve Width Reciprocal Lattice Point Misfit Stress Edge Thread Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Synchrotron X-ray experiments were supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D Program. M. Yu. Gutkin acknowledges the support of the Russian Science Foundation (Grant RSF No. 14-29-00086) in development of the theoretical model of misfit stress relaxation. E. N. Mokhov acknowledges the support of the Russian Science Foundation (Grant RSF No. 16–42–01098) for providing the sublimation growth of AlN layers on evaporating SiC substrates.


  1. 1.
    Seong T-Y, Han J, Amano H, Morko H (eds) (2013) III-Nitride based light emitting diodes and applications. Springer, Berlin. doi: 10.1007/978-94-007-5863-6
  2. 2.
    Hartmann C, Wollweber J, Sintonen S, Dittmar A, Kirste L, Kollowa S, Irmscher K, Bickermann M (2016) Preparation of deep UV transparent AlN substrates with high structural perfection for optoelectronic devices. CrystEngComm 18:3488–3497. doi: 10.1039/c6ce00622a CrossRefGoogle Scholar
  3. 3.
    Sumathi RR, Gille P (2014) Role of SiC substrate polarity on the growth and properties of bulk AlN single crystals. J Mater Sci 25:3733–3741. doi: 10.1007/s10854-014-2083-z Google Scholar
  4. 4.
    Nagai I, Kato T, Miura T, Kamata H, Naoe K, Sanada K, Okumura H (2010) AlN bulk single crystal growth on 6H–SiC substrates by sublimation method. J Cryst Growth 312:2699–2704. doi: 10.1016/j.jcrysgro.2010.05.044 CrossRefGoogle Scholar
  5. 5.
    Sumathi RR (2013) Bulk AlN single crystal growth on foreign substrate and preparation of free-standing native seeds. CrystEngComm 15:2232–2240. doi: 10.1039/c2ce26599k CrossRefGoogle Scholar
  6. 6.
    Sumathi RR, Barz RU, Straubinger T, Gille P (2012) Structural and surface topography analysis of AlN single crystals grown on 6H-SiC substrates. J Cryst Growth 360:193–196. doi: 10.1016/j.jcrysgro.2011.11.054 CrossRefGoogle Scholar
  7. 7.
    Kapolnek D, Wu XH, Heying B, Keller S, Keller BP, Mishra UK, DenBaars SP, Speck JS (1995) Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire. Appl Phys Lett 67:1541–1543. doi: 10.1063/1.114486 CrossRefGoogle Scholar
  8. 8.
    Heying B, Wu XH, Keller S, DenBaars SP, Speck JS (1996) Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films. Appl Phys Lett 68:643–645. doi: 10.1063/1.116495 CrossRefGoogle Scholar
  9. 9.
    Kyutt RN, Ratnikov VV, Mosina GN, Shcheglov MP (1999) Structural perfection of GaN epitaxial layers according to X-ray diffraction measurements. Phys Solid State 41:25–31. doi: 10.1134/1.1130722 CrossRefGoogle Scholar
  10. 10.
    Lee CD, Ramachandran V, Sagar A, Feenstra RM, Greve DW, Sarney WL, Salamanca-Riba L, Look DC, Bai S, Choyke WJ, Devaty RP (2001) Properties of GaN epitaxial layers grown on 6H–SiC (0001) by plasma-assisted molecular beam epitaxy. J Electron Mater 30:162–169. doi: 10.1007/s11664-001-0010-6 CrossRefGoogle Scholar
  11. 11.
    Argunova TS, Gutkin MY, Mokhov EN, Kazarova OP, Lim J-H, Scheglov MP (2015) Prevention of AlN crystal from cracking on SiC substrates by evaporation of the substrates. Phys Solid State 57:2473–2478. doi: 10.1134/S1063783415120057 CrossRefGoogle Scholar
  12. 12.
    Argunova TS, Gutkin MY, Kazarova OP, Mokhov EN, Nagalyuk SS, Je JH (2015) Synchrotron X-ray study on crack prevention in AlN crystals grown on gradually decomposing SiC substrates. Mater Sci Forum 821–823:1011–1014. doi: 10.4028/ CrossRefGoogle Scholar
  13. 13.
    Mokhov E, Izmaylova I, Kazarova O, Wolfson A, Nagalyuk S, Litvin D, Vasiliev A, Helava H, Makarov Y (2013) Specific features of sublimation growth of bulk AlN crystals on SiC wafers. Phys Status Solidi C 10:445–448. doi: 10.1002/pssc.201200638 CrossRefGoogle Scholar
  14. 14.
    Balzar D (1999) In: Snyder RL, Fiala J, Bunge HJ (eds) Defect and microstructure analysis by diffraction. Oxford University Press, New York, pp 94–126Google Scholar
  15. 15.
    Floro JA, Follstaedt DM, Provencio P, Hearne SJ, Lee SR (2004) Misfit dislocation formation in the AlGaN/GaN heterointerface. J Appl Phys 96:7087–7094. doi: 10.1063/1.1812361 CrossRefGoogle Scholar
  16. 16.
    Miyanaga M, Mizuhara N, Fujiwara S, Shimazu M, Nakahata H, Kawase T (2007) Evaluation of AlN single-crystal grown by sublimation method. J Cryst Growth 300:45–49. doi: 10.1016/j.jcrysgro.2006.10.233 CrossRefGoogle Scholar
  17. 17.
    Bickermann M, Epelbaum BM, Filip O, Heimann P, Nagata S, Winnacker A (2008) Structural properties of aluminum nitride bulk single crystals grown by PVT. Phys Status Solidi C 5:1502–1504. doi: 10.1002/pssc.200778422 CrossRefGoogle Scholar
  18. 18.
    Kamata H, Naoe K, Sanada K, Ichinose N (2009) Single-crystal growth of aluminum nitride on 6H–SiC substrates by an open-system sublimation method. J Cryst Growth 311:1291–1295. doi: 10.1016/j.jcrysgro.2008.12.025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. S. Argunova
    • 1
    • 2
    Email author
  • M. Yu. Gutkin
    • 3
    • 4
    • 5
  • K. D. Shcherbachev
    • 6
  • J. H. Je
    • 2
  • J. -H. Lim
    • 7
  • O. P. Kazarova
    • 1
  • E. N. Mokhov
    • 1
  1. 1.Ioffe InstituteRASSt. PetersburgRussia
  2. 2.Department of Materials Science & EngineeringPohang University of Science and TechnologyPohangRepublic of Korea
  3. 3.Institute of Problems of Mechanical EngineeringRASSt. PetersburgRussia
  4. 4.Department of Mechanics and Control ProcessesPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  5. 5.ITMO UniversitySt. PetersburgRussia
  6. 6.National University of Science and Technology MISISMoscowRussia
  7. 7.Industrial Technology Convergence CenterPohang Accelerator LaboratoryPohangRepublic of Korea

Personalised recommendations