Advertisement

Journal of Materials Science

, Volume 52, Issue 7, pp 4129–4141 | Cite as

Synthesis of Ti matrix composites reinforced with TiC particles: thermodynamic equilibrium and change in microstructure

  • Jérôme Roger
  • Bruno Gardiola
  • Jérôme Andrieux
  • Jean-Claude Viala
  • Olivier DezellusEmail author
Original Paper

Abstract

The evolution of TiC reinforcement during the high-temperature consolidation step of a particulate-reinforced Ti matrix composite has been studied. A four-step scenario has been highlighted starting with the dissolution of the smallest particles to reach C saturation of the Ti matrix, followed by a change in the TiC stoichiometry from the initial TiC0.96 composition to the equilibrium composition (TiC0.57). This change in composition induces an increase in both the total mass fraction of reinforcement and the particle diameter. The diameter increase promotes contact between individual particles in the most reinforced domains and initiates an aggregation phenomenon that is responsible for the observed high growth rate of particles for heat treatment times shorter than 1 h. Finally Ostwald ripening is responsible for the growth of particles for longer heat treatment times.

Keywords

Rietveld Refinement Heat Treatment Time Duplex Microstructure Excess Kurtosis Consolidation Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was conducted in the framework of the COMETTi project sponsored by the French national research agency (ANR) under the reference ANR-09-MAPR-0021. The authors wish to thank the “Centre Technologique des Microstructures” (CTµ, http://microscopies.univ-lyon1.fr) for help and advice during the SEM observations and the ‘‘Service Central d’Analyse, SCA, CNRS’’, and particularly P. James and L. Ayouni for chemical analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

References

  1. 1.
    Clyne TW, Withers PJ (1993) An introduction to metal matrix composites. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Lindroos VK, Talvitie MJ (1995) Recent advances in metal matrix composites. J Mater Process Technol 53:273–284. doi: 10.1016/0924-0136(95)01985-N CrossRefGoogle Scholar
  3. 3.
    Miracle DB (2005) Metal matrix composites—from science to technological significance. Compos Sci Technol 65:2526–2540. doi: 10.1016/j.compscitech.2005.05.027 CrossRefGoogle Scholar
  4. 4.
    Liu Y, Chen LF, Tang HP et al (2006) Design of powder metallurgy titanium alloys and composites. Mater Sci Eng A 418:25–35. doi: 10.1016/j.msea.2005.10.057 CrossRefGoogle Scholar
  5. 5.
    Kondoh K (2015) Titanium metal matrix composites by powder metallurgy (PM) routes. In: Qian MA, Froes FH (eds) Titanium powder metallurgy. Elsevier, Oxford, pp 277–297CrossRefGoogle Scholar
  6. 6.
    Dumitrescu LFS, Hillert M, Sundman B (1999) A reassessment of Ti-C-N based on a critical review of available assessments of Ti-N and Ti-C. Zeitschrift fur Metallkunde 90:534–541Google Scholar
  7. 7.
    Wanjara P, Drew RAL, Root J, Yue S (2000) Evidence for stable stoichiometric Ti2C at the interface in TiC particulate reinforced Ti alloy composites. Acta Mater 48:1443–1450. doi: 10.1016/S1359-6454(99)00453-X CrossRefGoogle Scholar
  8. 8.
    Quinn CJ, Kohlstedt Dl (1984) Solid-state reaction between titanium carbide and titanium metal. J Am Ceram Soc 67:305–310. doi: 10.1111/j.1151-2916.1984.tb19527.x CrossRefGoogle Scholar
  9. 9.
    Erlin Z, Songyan Z, Zhaojun Z (2000) Microstructure of XDTM Ti-6Al/TiC composites. J Mater Sci 35:5989–5994. doi: 10.1023/A:1026794810924 CrossRefGoogle Scholar
  10. 10.
    Fruhauf JB, Roger J, Dezellus O et al (2012) Microstructural and mechanical comparison of Ti + 15%TiCp composites prepared by free sintering, HIP and extrusion. Mater Sci Eng A 554:22–32. doi: 10.1016/j.msea.2012.05.096 CrossRefGoogle Scholar
  11. 11.
    Rachinger WA (1948) A correction for the α 1 α 2 doublet in the measurement of widths of X-ray diffraction lines. J Sci Instrum 25:254. doi: 10.1088/0950-7671/25/7/125 CrossRefGoogle Scholar
  12. 12.
    Le Bail A (2005) Whole powder pattern decomposition methods and applications: a retrospection. Powder Diffr 20:316–326. doi: 10.1154/1.2135315 CrossRefGoogle Scholar
  13. 13.
    Louer D (1998) Advances in powder diffraction analysis. Acta Crystallogr. Sect A 54:922–933CrossRefGoogle Scholar
  14. 14.
    Storms EK (1967) The refractory carbides. Academic Press, New YorkGoogle Scholar
  15. 15.
    Bittner H, Goretzki H (1962) Magnetische Untersuchungen Der Carbide Tic, Zrc, Hfc, Vc, Nbc Und Tac. Mon Chem 93:1000. doi: 10.1007/BF00905899 CrossRefGoogle Scholar
  16. 16.
    Norton JT, Lewis RK (1963) Properties of non-stoichiometric metallic carbides. Advanced Metals Research Corp, SomervilleGoogle Scholar
  17. 17.
    Rudy E, Bruckl C, Harmond DP (1965) Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Air Force Materials Laboratory, Research and Technology DivisionGoogle Scholar
  18. 18.
    Ramqvist L (1968) Variation of lattice parameter and hardness with carbon content of group 4 b metal carbides. Jernkontorets Ann 152:517Google Scholar
  19. 19.
    Vicens J, Chermant JL (1972) Contribution to study of system titanium-carbon-oxygen. Revue Chim Minérale 9:557–567Google Scholar
  20. 20.
    Kiparisov SS, Narva VK, Kolupaeva SY (1975) Effect of titanium carbide composition on the properties of titanium carbide-steel materials. Poroshk Metall 7:41–44Google Scholar
  21. 21.
    Frage N, Levin L, Manor E et al (1996) Iron-titanium-carbon system. II. Microstructure of titanium carbide (TiCx) of various stoichiometries infiltrated with iron-carbon alloy. Scr Mater 35:799–803. doi: 10.1016/1359-6462(96)00230-8 CrossRefGoogle Scholar
  22. 22.
    Fernandes JC, Anjinho C, Amaral PM et al (2003) Characterisation of solar-synthesised TiCx (x = 0.50, 0.625, 0.75, 0.85, 0.90 and 1.0) by X-ray diffraction, density and Vickers microhardness. Mater Chem Phys 77:711–718CrossRefGoogle Scholar
  23. 23.
    Nishimura H, Kimura H (1956) Titanium-oxygen-carbon system. IV. Nippon Kinzoku Gakkaishi 20:589–592Google Scholar
  24. 24.
    Neumann G, Ettmayer P, Kieffer R (1972) System TiC-TiN-TiO. Monatshefte für Chemie 103:1130–1137CrossRefGoogle Scholar
  25. 25.
    Bish DL, Howard SA (1988) Quantitative phase analysis using the Rietveld method. J Appl Crystallogr 21:86–91CrossRefGoogle Scholar
  26. 26.
    León-Reina L, García-Maté M, Álvarez-Pinazo G et al (2016) Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations. J Appl Crystallogr 49:722–735. doi: 10.1107/S1600576716003873 CrossRefGoogle Scholar
  27. 27.
    Burzlaff H, Hountas A (1982) Computer program for the derivation of symmetry operations from the space-group symbols. J Appl Crystallogr 15:464–467. doi: 10.1107/S0021889882012382 CrossRefGoogle Scholar
  28. 28.
    McCusker LB, Von Dreele RB, Cox DE et al (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50. doi: 10.1107/S0021889898009856 CrossRefGoogle Scholar
  29. 29.
    Baldan A (2002) Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys—Part I: Ostwald ripening theories. J Mater Sci 37:2171–2202. doi: 10.1023/A:1015388912729 CrossRefGoogle Scholar
  30. 30.
    MacKay RA, Nathal MV (1990) γ′ coarsening in high volume fraction nickel-base alloys. Acta Metall Mater 38:993–1005. doi: 10.1016/0956-7151(90)90171-C CrossRefGoogle Scholar
  31. 31.
    Jayanth CS, Nash P (1989) Factors affecting particle-coarsening kinetics and size distribution. J Mater Sci 24:3041–3052. doi: 10.1007/BF01139016 CrossRefGoogle Scholar
  32. 32.
    Kim Y-J, Chung H, Kang S-JL (2001) In situ formation of titanium carbide in titanium powder compacts by gas–solid reaction. Composites A 32:731–738. doi: 10.1016/S1359-835X(99)00092-5 CrossRefGoogle Scholar
  33. 33.
    Cadoff I, Nielsen JP (1953) Titanium-carbon phase diagram. J Met 5:248–252Google Scholar
  34. 34.
    van Loo FJJ, Bastin GF (1989) On the diffusion of carbon in titanium carbide. MTA 20:403–411. doi: 10.1007/BF02653919 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615Université Claude Bernard LYON 1VilleurbanneFrance
  2. 2.CNRS, Lab Composites ThermoStruct, UMR 5801Univ BordeauxPessacFrance

Personalised recommendations