Skip to main content

Advertisement

Log in

Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Wood is one of the key renewable resources due to its excellent structure and physical properties. Functionalized wood and wood-based materials not only possess important engineering applications but also great potential in some new technology fields, such as electronics, optics, and energy. Endowing these functional wood-based materials with magnetic properties has an important significance for exploring lightweight building materials or electronic devices. In this study, we report the fabrication of a transparent magnetic wood (TMW) based on filling the index-matching methyl methacrylate and magnetic Fe3O4 nanoparticles into the delignified wood template. The presence of the polymer and Fe3O4 nanoparticles within the wood structure is monitored by scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier transformation infrared spectroscopy. The resulting TMW possesses moderate transparency and magnetic properties combining with outstanding mechanical performance. Moreover, the influence of the concentration of Fe3O4 nanoparticles on the final optical, magnetic, and mechanical properties of TMW is also discussed. This work provides a potential strategy to develop wood-based materials for magneto-optical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374

    Article  Google Scholar 

  2. Li D, Lv C, Liu L, Xia Y, She X, Guo S, Yang D (2015) Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Central Sci 1:261–269

    Article  Google Scholar 

  3. Zou Y, Chen S, Yang X, Ma N, Xia Y, Yang D, Guo S (2016) Suppressing Fe-Li antisite defects in LiFePO4/carbon hybrid microtube to enhance the lithium ion storage. Adv Energy Mater. doi:10.1002/aenm.201601549

  4. Ma N, Jia YA, Yang X, She X, Zhang L, Peng Z, Yang D (2016) Seaweed biomass derived (Ni, Co)/CNT nanoaerogels: efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. J Mater Chem A 4:6376–6384

    Article  Google Scholar 

  5. Liu L, Yang X, Ma N, Liu H, Xia Y, Chen C, Yao X (2016) Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small. doi:10.1002/smll.201503305

  6. Cabane E, Keplinger T, Merk V, Hass P, Burgert I (2014) Renewable and functional wood materials by grafting polymerization within cell walls. ChemSusChem 7:1020–1025

    Article  Google Scholar 

  7. Ugolev BN (2014) Wood as a natural smart material. Wood Sci Technol 48:553–568

    Article  Google Scholar 

  8. Ermeydan MA, Cabane E, Hass P, Koetz J, Burgert I (2014) Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly (ε-caprolactone) grafting into the cell walls. Green Chem 16:3313–3321

    Article  Google Scholar 

  9. Persson PV, Hafrén J, Fogden A, Daniel G, Iversen T (2004) Silica nanocasts of wood fibers: a study of cell-wall accessibility and structure. Biomacromolecules 5:1097–1101

    Article  Google Scholar 

  10. Mahltig B, Swaboda C, Roessler A, Böttcher H (2008) Functionalising wood by nanosol application. J Mater Chem 18:3180–3192

    Article  Google Scholar 

  11. Merk V, Chanana M, Gierlinger N, Hirt AM, Burgert I (2014) Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure. ACS Appl Mater Inter 6:9760–9767

    Article  Google Scholar 

  12. Gan W, Liu Y, Gao L, Zhan X, Li J (2015) Growth of CoFe2O4 particles on wood template using controlled hydrothermal method at low temperature. Ceram Int 41:14876–14885

    Article  Google Scholar 

  13. Sun Q, Lu Y, Liu Y (2011) Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. J Mater Sci 46:7706–7712. doi:10.1007/s10853-011-5750-y

    Article  Google Scholar 

  14. Sun Q, Lu Y, Zhang H, Yang D, Wang Y, Xu J, Li J (2012) Improved UV resistance in wood through the hydrothermal growth of highly ordered ZnO nanorod arrays. J Mater Sci 47:4457–4462. doi:10.1007/s10853-012-6304-7

    Article  Google Scholar 

  15. Li Y, Fu Q, Yu S, Yan M, Berglund L (2016) Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecules 17:1358–1364

    Article  Google Scholar 

  16. Zhu M, Song J, Li T, Gong A, Wang Y, Dai J, Hu L (2016) Highly anisotropic, highly transparent wood composites. Adv Mater. doi:10.1002/adma.201600427

  17. Zhu M, Li T, Davis CS, Yao Y, Dai J, Wang Y, Hu L (2016) Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26:332–339

    Article  Google Scholar 

  18. Li T, Zhu M, Yang Z, Song J, Dai J, Yao Y, Hu L (2016) Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv Energy Mater. doi:10.1002/aenm.201601122

  19. Lopez-Santiago A, Gangopadhyay P, Thomas J, Norwood RA, Persoons A, Peyghambarian N (2009) Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality. Appl Phys Lett 95:143302

    Article  Google Scholar 

  20. Patoka P, Skeren T, Hilgendorff M, Zhi L, Paudel T, Kempa K, Giersig M (2011) Transmission of light through magnetic nanocavities. Small 7:3096–3100

    Article  Google Scholar 

  21. Gach PC, Sims CE, Allbritton NL (2010) Transparent magnetic photoresists for bioanalytical applications. Biomaterials 31:8810–8817

    Article  Google Scholar 

  22. Louzguine-Luzgin DV, Hitosugi T, Chen N, Ketov SV, Shluger A, Zadorozhnyy VY, Inoue A (2013) Investigation of transparent magnetic material formed by selective oxidation of a metallic glass. Thin Solid Films 531:471–475

    Article  Google Scholar 

  23. Thomas S, Sakthikumar D, Joy PA, Yoshida Y, Anantharaman MR (2006) Optically transparent magnetic nanocomposites based on encapsulated Fe3O4 nanoparticles in a sol–gel silica network. Nanotechnology 17:5565

    Article  Google Scholar 

  24. Li Y, Zhu H, Gu H, Dai H, Fang Z, Weadock NJ, Hu L (2013) Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. J Mater Chem A 1:15278–15283

    Article  Google Scholar 

  25. Song HM, Kim JC, Hong JH, Lee YB, Choi J, Lee JI, Kim WS, Kim JH, Hur NH (2007) Magnetic and transparent composites by linking liquid crystals to ferrite nanoparticles through covalent networks. Adv Funct Mater 17:2070–2076

    Article  Google Scholar 

  26. Fink S (1992) Transparent wood–a new approach in the functional study of wood structure. Holzforschung 46:403–408

    Article  Google Scholar 

  27. Li J, Lu Y, Yang D, Sun Q, Liu Y, Zhao H (2011) Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 12:1860–1867

    Article  Google Scholar 

  28. Lu Y, Sun Q, Yang D, She X, Yao X, Zhu G, Li J (2012) Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing–thawing in ionic liquid solution. J Mater Chem 22:13548–13557

    Article  Google Scholar 

  29. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177:2679–2682

    Article  Google Scholar 

  30. Gierlinger N, Goswami L, Schmidt M, Burgert I, Coutand C, Rogge T, Schwanninger M (2008) In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. Biomacromolecules 9:2194–2201

    Article  Google Scholar 

  31. Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A (2010) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44:225–242

    Article  Google Scholar 

  32. Jiang S, Gui Z, Bao C, Dai K, Wang X, Zhou K, Hu Y (2013) Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chem Eng J 226:326–335

    Article  Google Scholar 

  33. Kavale MS, Mahadik DB, Parale VG, Wagh PB, Gupta SC, Rao AV, Barshilia HC (2011) Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent. Appl Surf Sci 258:158–162

    Article  Google Scholar 

  34. Köseoğlu Y, Alan F, Tan M, Yilgin R, Öztürk M (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int 38:3625–3634

    Article  Google Scholar 

  35. Schlegel A, Alvarado SF, Wachter P (1979) Optical properties of magnetite (Fe3O4). J Phys C 12:1157

    Article  Google Scholar 

  36. Gu H, Huang Y, Zhang X, Wang Q, Zhu J, Shao L, Guo Z (2012) Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53:801–809

    Article  Google Scholar 

  37. Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546

    Article  Google Scholar 

  38. Goto K, Tamura J, Shinzato S, Fujibayashi S, Hashimoto M, Kawashita M, Nakamura T (2005) Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials 26:6496–6505

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 31470584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 440 kb)

Supplementary material 2 (DOCX 1500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, W., Gao, L., Xiao, S. et al. Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template. J Mater Sci 52, 3321–3329 (2017). https://doi.org/10.1007/s10853-016-0619-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0619-8

Keywords

Navigation