Advertisement

Journal of Materials Science

, Volume 52, Issue 6, pp 3321–3329 | Cite as

Transparent magnetic wood composites based on immobilizing Fe3O4 nanoparticles into a delignified wood template

  • Wentao Gan
  • Likun Gao
  • Shaoliang Xiao
  • Wenbo Zhang
  • Xianxu Zhan
  • Jian LiEmail author
Original Paper

Abstract

Wood is one of the key renewable resources due to its excellent structure and physical properties. Functionalized wood and wood-based materials not only possess important engineering applications but also great potential in some new technology fields, such as electronics, optics, and energy. Endowing these functional wood-based materials with magnetic properties has an important significance for exploring lightweight building materials or electronic devices. In this study, we report the fabrication of a transparent magnetic wood (TMW) based on filling the index-matching methyl methacrylate and magnetic Fe3O4 nanoparticles into the delignified wood template. The presence of the polymer and Fe3O4 nanoparticles within the wood structure is monitored by scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier transformation infrared spectroscopy. The resulting TMW possesses moderate transparency and magnetic properties combining with outstanding mechanical performance. Moreover, the influence of the concentration of Fe3O4 nanoparticles on the final optical, magnetic, and mechanical properties of TMW is also discussed. This work provides a potential strategy to develop wood-based materials for magneto-optical application.

Keywords

Lignin PMMA Magnetic Nanoparticles Wood Sample Fe3O4 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 31470584).

Supplementary material

Supplementary material 1 (MP4 440 kb)

10853_2016_619_MOESM2_ESM.docx (1.5 mb)
Supplementary material 2 (DOCX 1500 kb)

References

  1. 1.
    Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, Hu L (2016) Wood-derived materials for green electronics, biological devices, and energy applications. Chem Rev 116(16):9305–9374CrossRefGoogle Scholar
  2. 2.
    Li D, Lv C, Liu L, Xia Y, She X, Guo S, Yang D (2015) Egg-box structure in cobalt alginate: a new approach to multifunctional hierarchical mesoporous N-doped carbon nanofibers for efficient catalysis and energy storage. ACS Central Sci 1:261–269CrossRefGoogle Scholar
  3. 3.
    Zou Y, Chen S, Yang X, Ma N, Xia Y, Yang D, Guo S (2016) Suppressing Fe-Li antisite defects in LiFePO4/carbon hybrid microtube to enhance the lithium ion storage. Adv Energy Mater. doi: 10.1002/aenm.201601549
  4. 4.
    Ma N, Jia YA, Yang X, She X, Zhang L, Peng Z, Yang D (2016) Seaweed biomass derived (Ni, Co)/CNT nanoaerogels: efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. J Mater Chem A 4:6376–6384CrossRefGoogle Scholar
  5. 5.
    Liu L, Yang X, Ma N, Liu H, Xia Y, Chen C, Yao X (2016) Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small. doi: 10.1002/smll.201503305
  6. 6.
    Cabane E, Keplinger T, Merk V, Hass P, Burgert I (2014) Renewable and functional wood materials by grafting polymerization within cell walls. ChemSusChem 7:1020–1025CrossRefGoogle Scholar
  7. 7.
    Ugolev BN (2014) Wood as a natural smart material. Wood Sci Technol 48:553–568CrossRefGoogle Scholar
  8. 8.
    Ermeydan MA, Cabane E, Hass P, Koetz J, Burgert I (2014) Fully biodegradable modification of wood for improvement of dimensional stability and water absorption properties by poly (ε-caprolactone) grafting into the cell walls. Green Chem 16:3313–3321CrossRefGoogle Scholar
  9. 9.
    Persson PV, Hafrén J, Fogden A, Daniel G, Iversen T (2004) Silica nanocasts of wood fibers: a study of cell-wall accessibility and structure. Biomacromolecules 5:1097–1101CrossRefGoogle Scholar
  10. 10.
    Mahltig B, Swaboda C, Roessler A, Böttcher H (2008) Functionalising wood by nanosol application. J Mater Chem 18:3180–3192CrossRefGoogle Scholar
  11. 11.
    Merk V, Chanana M, Gierlinger N, Hirt AM, Burgert I (2014) Hybrid wood materials with magnetic anisotropy dictated by the hierarchical cell structure. ACS Appl Mater Inter 6:9760–9767CrossRefGoogle Scholar
  12. 12.
    Gan W, Liu Y, Gao L, Zhan X, Li J (2015) Growth of CoFe2O4 particles on wood template using controlled hydrothermal method at low temperature. Ceram Int 41:14876–14885CrossRefGoogle Scholar
  13. 13.
    Sun Q, Lu Y, Liu Y (2011) Growth of hydrophobic TiO2 on wood surface using a hydrothermal method. J Mater Sci 46:7706–7712. doi: 10.1007/s10853-011-5750-y CrossRefGoogle Scholar
  14. 14.
    Sun Q, Lu Y, Zhang H, Yang D, Wang Y, Xu J, Li J (2012) Improved UV resistance in wood through the hydrothermal growth of highly ordered ZnO nanorod arrays. J Mater Sci 47:4457–4462. doi: 10.1007/s10853-012-6304-7 CrossRefGoogle Scholar
  15. 15.
    Li Y, Fu Q, Yu S, Yan M, Berglund L (2016) Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromolecules 17:1358–1364CrossRefGoogle Scholar
  16. 16.
    Zhu M, Song J, Li T, Gong A, Wang Y, Dai J, Hu L (2016) Highly anisotropic, highly transparent wood composites. Adv Mater. doi: 10.1002/adma.201600427
  17. 17.
    Zhu M, Li T, Davis CS, Yao Y, Dai J, Wang Y, Hu L (2016) Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26:332–339CrossRefGoogle Scholar
  18. 18.
    Li T, Zhu M, Yang Z, Song J, Dai J, Yao Y, Hu L (2016) Wood composite as an energy efficient building material: guided sunlight transmittance and effective thermal insulation. Adv Energy Mater. doi: 10.1002/aenm.201601122
  19. 19.
    Lopez-Santiago A, Gangopadhyay P, Thomas J, Norwood RA, Persoons A, Peyghambarian N (2009) Faraday rotation in magnetite-polymethylmethacrylate core-shell nanocomposites with high optical quality. Appl Phys Lett 95:143302CrossRefGoogle Scholar
  20. 20.
    Patoka P, Skeren T, Hilgendorff M, Zhi L, Paudel T, Kempa K, Giersig M (2011) Transmission of light through magnetic nanocavities. Small 7:3096–3100CrossRefGoogle Scholar
  21. 21.
    Gach PC, Sims CE, Allbritton NL (2010) Transparent magnetic photoresists for bioanalytical applications. Biomaterials 31:8810–8817CrossRefGoogle Scholar
  22. 22.
    Louzguine-Luzgin DV, Hitosugi T, Chen N, Ketov SV, Shluger A, Zadorozhnyy VY, Inoue A (2013) Investigation of transparent magnetic material formed by selective oxidation of a metallic glass. Thin Solid Films 531:471–475CrossRefGoogle Scholar
  23. 23.
    Thomas S, Sakthikumar D, Joy PA, Yoshida Y, Anantharaman MR (2006) Optically transparent magnetic nanocomposites based on encapsulated Fe3O4 nanoparticles in a sol–gel silica network. Nanotechnology 17:5565CrossRefGoogle Scholar
  24. 24.
    Li Y, Zhu H, Gu H, Dai H, Fang Z, Weadock NJ, Hu L (2013) Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network. J Mater Chem A 1:15278–15283CrossRefGoogle Scholar
  25. 25.
    Song HM, Kim JC, Hong JH, Lee YB, Choi J, Lee JI, Kim WS, Kim JH, Hur NH (2007) Magnetic and transparent composites by linking liquid crystals to ferrite nanoparticles through covalent networks. Adv Funct Mater 17:2070–2076CrossRefGoogle Scholar
  26. 26.
    Fink S (1992) Transparent wood–a new approach in the functional study of wood structure. Holzforschung 46:403–408CrossRefGoogle Scholar
  27. 27.
    Li J, Lu Y, Yang D, Sun Q, Liu Y, Zhao H (2011) Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 12:1860–1867CrossRefGoogle Scholar
  28. 28.
    Lu Y, Sun Q, Yang D, She X, Yao X, Zhu G, Li J (2012) Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing–thawing in ionic liquid solution. J Mater Chem 22:13548–13557CrossRefGoogle Scholar
  29. 29.
    Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177:2679–2682CrossRefGoogle Scholar
  30. 30.
    Gierlinger N, Goswami L, Schmidt M, Burgert I, Coutand C, Rogge T, Schwanninger M (2008) In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. Biomacromolecules 9:2194–2201CrossRefGoogle Scholar
  31. 31.
    Rana R, Langenfeld-Heyser R, Finkeldey R, Polle A (2010) FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Sci Technol 44:225–242CrossRefGoogle Scholar
  32. 32.
    Jiang S, Gui Z, Bao C, Dai K, Wang X, Zhou K, Hu Y (2013) Preparation of functionalized graphene by simultaneous reduction and surface modification and its polymethyl methacrylate composites through latex technology and melt blending. Chem Eng J 226:326–335CrossRefGoogle Scholar
  33. 33.
    Kavale MS, Mahadik DB, Parale VG, Wagh PB, Gupta SC, Rao AV, Barshilia HC (2011) Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent. Appl Surf Sci 258:158–162CrossRefGoogle Scholar
  34. 34.
    Köseoğlu Y, Alan F, Tan M, Yilgin R, Öztürk M (2012) Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram Int 38:3625–3634CrossRefGoogle Scholar
  35. 35.
    Schlegel A, Alvarado SF, Wachter P (1979) Optical properties of magnetite (Fe3O4). J Phys C 12:1157CrossRefGoogle Scholar
  36. 36.
    Gu H, Huang Y, Zhang X, Wang Q, Zhu J, Shao L, Guo Z (2012) Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53:801–809CrossRefGoogle Scholar
  37. 37.
    Bekhta P, Niemz P (2003) Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57:539–546CrossRefGoogle Scholar
  38. 38.
    Goto K, Tamura J, Shinzato S, Fujibayashi S, Hashimoto M, Kawashita M, Nakamura T (2005) Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Biomaterials 26:6496–6505CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wentao Gan
    • 1
  • Likun Gao
    • 1
  • Shaoliang Xiao
    • 1
  • Wenbo Zhang
    • 1
  • Xianxu Zhan
    • 2
  • Jian Li
    • 1
    Email author
  1. 1.Research Center of Wood Bionic Intelligent ScienceNortheast Forestry UniversityHarbinPeople’s Republic of China
  2. 2.Dehua TB New Decoration Material Co., LtdHuzhouPeople’s Republic of China

Personalised recommendations