Journal of Materials Science

, Volume 52, Issue 5, pp 2705–2719 | Cite as

The impact of grain size, A/B-cation ratio, and Y-doping on secondary phase formation in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ

  • Matthias Meffert
  • Lana-Simone Unger
  • Lukas Grünewald
  • Heike Störmer
  • Stefan F. Wagner
  • Ellen Ivers-Tiffée
  • Dagmar Gerthsen
Original Paper


The application of mixed ionic–electronic conducting (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ (BSCF) as gas separation membrane is up to now hampered by secondary phase formation which impairs the excellent oxygen permeation properties of this material. In this work, we have studied the impact of grain size and A/B-cation ratio on secondary phase formation in BSCF and Y-doped (Ba0.5Sr0.5)(Co0.8Fe0.2)0.9Y0.1O3−δ (BSCF10Y) by electron microscopic techniques before and after long-term thermal exposure at an application-relevant temperature (~760 °C). A large content of secondary phases is found in samples with small grain sizes because grain boundaries provide nucleation sites for secondary phases. Higher sintering temperatures increase the grain sizes and substantially reduce the content of secondary phases. Variations of the A/B-cation ratio between (Ba0.5Sr0.5)0.95(Co0.8Fe0.2)O3−δ and (Ba0.5Sr0.5)1.05(Co0.8Fe0.2)O3−δ do not lead to a change of the composition of the cubic BSCF phase but changes the volume fraction of Co3O4 precipitates which are already formed during sintering. BSCF with an excess of A-site cations contains the smallest overall amount of secondary phases in undoped BSCF due to the minimization of Co3O4 precipitation during sintering and the reduction of nucleation sites for other secondary phases at application-relevant temperatures. Secondary phase formation in BSCF10Y can be almost completely suppressed due to the stabilization of the cubic BSCF phase by Y-doping and large grain sizes after high-temperature sintering.


  1. 1.
    Gellings PJ, Bouwmeester HJM (1997) The CRC handbook of solid state electrochemistry. CRC Press, Boca RatonGoogle Scholar
  2. 2.
    Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000) Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane. J Membr Sci 172:177–188CrossRefGoogle Scholar
  3. 3.
    McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3−δ measured by in situ neutron diffraction. Chem Mater 18:2187–2193CrossRefGoogle Scholar
  4. 4.
    Wang H, Tablet C, Feldhoff A, Caro J, Caro J (2005) Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sci 262:20–26CrossRefGoogle Scholar
  5. 5.
    Zeng P, Chen Z, Zhou W, Gu H, Shao Z, Liu S (2007) Re-evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite as oxygen semi-permeable membrane. J Membr Sci 291:148–156CrossRefGoogle Scholar
  6. 6.
    Ovenstone J, Jung J-I, White JS, Edwards DD, Misture ST (2008) Phase stability of BSCF in low oxygen partial pressures. J Solid State Chem 181:576–586CrossRefGoogle Scholar
  7. 7.
    Niedrig C, Menesklou W, Wagner SF, Ivers-Tiffee E (2012) High-temperature pO2 stability of metal oxides determined by amperometric oxygen titration. J Electrochem Soc 160:F135–F140CrossRefGoogle Scholar
  8. 8.
    Niedrig C, Wagner SF, Menesklou W, Baumann S, Ivers-Tiffée E (2015) Oxygen equilibration kinetics of mixed-conducting perovskites BSCF, LSCF, and PSCF at 900°C determined by electrical conductivity relaxation. Solid State Ionics 283:30–37CrossRefGoogle Scholar
  9. 9.
    Švarcová S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ. Solid State Ionics 178:1787–1791CrossRefGoogle Scholar
  10. 10.
    Niedrig C, Taufall S, Burriel M, Menesklou W, Wagner SF, Baumann S, Ivers-Tiffée E (2011) Thermal stability of the cubic phase in Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF). Solid State Ionics 197:25–31CrossRefGoogle Scholar
  11. 11.
    Müller P, Meffert M, Störmer H, Gerthsen D (2013) Fast mapping of the cobalt-valence state in Ba0.5Sr0.5Co0.8Fe0.2O3-d by electron energy loss spectroscopy. Microsc Microanal 19:1595–1605CrossRefGoogle Scholar
  12. 12.
    Müller P, Störmer H, Meffert M, Dieterle L, Niedrig C, Wagner SF, Ivers-Tiffée E, Gerthsen D (2013) Secondary phase formation in Ba0.5Sr0.5Co0.8Fe0.2O3-d studied by electron microscopy. Chem Mater 25:564–573CrossRefGoogle Scholar
  13. 13.
    Efimov K, Xu Q, Feldhoff A (2010) Transmission electron microscopy study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite decomposition at intermediate temperatures. Chem Mater 22:5866–5875CrossRefGoogle Scholar
  14. 14.
    Baumann S, Schulze-Küppers F, Roitsch S, Betz M, Zwick M, Pfaff EM, Meulenberg WA, Mayer J, Stöver D (2010) Influence of sintering conditions on microstructure and oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) oxygen transport membranes. J Membr Sci 359:102–109CrossRefGoogle Scholar
  15. 15.
    Buysse C, Kovalevsky A, Snijkers F, Buekenhoudt A, Mullens S, Luyten J, Kretzschmar J, Lenaerts S (2011) Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air. J Membr Sci 372:239–248CrossRefGoogle Scholar
  16. 16.
    Rutkowski B (2012) Mechanical properties and microstructure of dense ceramic membranes for oxygen separation in zero-emission power plants. PhD Thesis, RWTH Aachen, Germany.
  17. 17.
    Gasparyan H, Claridge JB, Rosseinsky MJ (2015) Oxygen permeation and stability of Mo-substituted BSCF membranes. J Mater Chem A 3:18265–18272CrossRefGoogle Scholar
  18. 18.
    Arnold M, Xu Q, Tichelaar FD, Feldhoff A (2009) Local charge disproportion in a high-performance perovskite. Chem Mater 21:635–640CrossRefGoogle Scholar
  19. 19.
    Harvey AS, Litterst FJ, Yang Z, Rupp JLM, Infortuna A, Gaucklera LJ (2009) Oxidation states of Co and Fe in Ba1-xSrxCo1-yFeyO3-d (x, y = 0.2-0.8) and oxygen desorption in the temperature range 300-1273 K. Phys Chem Chem Phys 11:3090–3098CrossRefGoogle Scholar
  20. 20.
    Harvey AS, Yang Z, Infortuna A, Beckel D, Purton JA, Gauckler LJ (2009) Development of electron holes across the temperature-induced semiconductor–metal transition in Ba1-xSrxCo1-yFeyO3−δ (x y = 0.2–0.8): a soft x-ray absorption spectroscopy study. J Phys: Condens Matter 21:15801–15811Google Scholar
  21. 21.
    Mueller DN, de Souza RA, Brendt J, Samuelis D, Martin M (2009) Oxidation states of the transition metal cations in the highly nonstoichiometric perovskite-type oxide Ba0.1Sr0.9Co0.8Fe0.2O3−δ. J Mater Chem 19:1960–1963CrossRefGoogle Scholar
  22. 22.
    Haworth P, Smart S, Glasscock J, da Costa JCD (2011) Yttrium doped BSCF membranes for oxygen separation. Sep Purif Technol 81:88–93CrossRefGoogle Scholar
  23. 23.
    Yakovlev S, Yoo CY, Fang S, Bouwmeester HJM (2010) Phase transformation and oxygen equilibration kinetics of pure and Zr-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite oxide probed by electrical conductivity relaxation. Appl Phys Lett 96:254101–254103CrossRefGoogle Scholar
  24. 24.
    Ravkina O, Klande T, Feldhoff A (2013) Investigation of Zr-doped BSCF perovskite membrane for oxygen separation in the intermediate temperature range. J Solid State Chem 201:101–106CrossRefGoogle Scholar
  25. 25.
    Meffert M, Störmer H, Gerthsen D (2016) Dopant-site determination in Y- and Sc-doped (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ by atom location by channeling enhanced microanalysis and the role of dopant site on secondary phase formation. Microsc Microanal 22:113–121CrossRefGoogle Scholar
  26. 26.
    Veen, van Andre C, Rebeilleau M, Farrusseng D, Mirodatos C (2003) Studies on the performance stability of mixed conducting BSCFO membranes in medium temperature oxygen permeation. Chem Commun 32–33Google Scholar
  27. 27.
    Vente JF, McIntosh S, Haije WG, Bouwmeester HJM (2006) Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. J Solid State Electrochem 10:581–588CrossRefGoogle Scholar
  28. 28.
    Chen Z, Ran R, Shao Z, Yu H, da Costa JC, Liu S (2009) Further performance improvement of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite membranes for air separation. Ceram Int 35:2455–2461CrossRefGoogle Scholar
  29. 29.
    Hong WK, Choi GM (2010) Oxygen permeation of BSCF membrane with varying thickness and surface coating. J Membr Sci 346:353–360CrossRefGoogle Scholar
  30. 30.
    Baumann S, Serra JM, Lobera MP, Escolástico S, Schulze-Küppers F, Meulenberg WA (2011) Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J Membr Sci 377:198–205CrossRefGoogle Scholar
  31. 31.
    Liang F, Jiang H, Jiang H, Luo H, Caro J, Feldhoff A (2011) Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube membrane in high-purity oxygen production. Chem Mater 23:4765–4772CrossRefGoogle Scholar
  32. 32.
    Li X, Kerstiens T, Markus T (2013) Oxygen permeability and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite at intermediate temperatures. J Membr Sci 438:83–89CrossRefGoogle Scholar
  33. 33.
    Rachadel PL, Motuzas J, Ji G, Hotza D, da Costa JCD (2014) The effect of non-ionic porous domains on supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes for O2 separation. J Membr Sci 454:382–389CrossRefGoogle Scholar
  34. 34.
    Liu Y, Zhu X, Yang W (2015) Degradation mechanism analysis of Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes at intermediate-low temperatures. AIChE J 1–10Google Scholar
  35. 35.
    Yang Y, Zhou W, Liu R, Li M, Rufford TE, Zhu Z (2015) In situ tetraethoxysilane-templated porous Ba0.5Sr0.5Co0.8Fe0.2O3−δ perovskite for the oxygen evolution reaction. Chem Electro Chem 2:200–203Google Scholar
  36. 36.
    Arnold M, Martynczuk J, Efimov K, Wang H, Feldhoff A (2008) Grain boundaries as barrier for oxygen transport in perovskite-type membranes. J Membr Sci 316:137–144CrossRefGoogle Scholar
  37. 37.
    Gao D, Zhao J, Zhou W, Ran R, Shao Z (2011) Influence of high-energy ball milling of the starting powder on the sintering; microstructure and oxygen permeability of Ba0.5Sr0.5Co0.5Fe0.5O3−δ membranes. J Membr Sci 366:203–211CrossRefGoogle Scholar
  38. 38.
    Yoon JS, Yoon MY, Lee EJ, Moon J-W, Hwang HJ (2010) Influence of Ce0.9Gd0.1O2-δ particles on microstructure and oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite membrane. Solid State Ionics 181:1387–1393CrossRefGoogle Scholar
  39. 39.
    Salehi M, Clemens F, Pfaff EM, Diethelm S, Leach C, Graule T, Grobéty B (2011) A case study of the effect of grain size on the oxygen permeation flux of BSCF disk-shaped membrane fabricated by thermoplastic processing. J Membr Sci 382:186–193CrossRefGoogle Scholar
  40. 40.
    Klande T, Ravkina O, Feldhoff A (2013) Effect of microstructure on oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and SrCo0.8Fe0.2O3−δ membranes. J Eur Ceram Soc 33:1129–1136CrossRefGoogle Scholar
  41. 41.
    Ge L, Zhou W, Ran R, Liu S, Shao Z, Jin W, Xu N (2007) Properties and performance of A-site deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ for oxygen permeating membrane. J Membr Sci 306:318–328CrossRefGoogle Scholar
  42. 42.
    Zhou W, Ran R, Shao Z, Zhuang W, Jia J, Gu H, Jin W, Xu N (2008) Barium-and strontium-enriched (Ba0.5Sr0.5)1 + xCo0.8Fe0.2O3−δ oxides as high-performance cathodes for intermediate-temperature solid-oxide fuel cells. Acta Mater 56:2687–2698CrossRefGoogle Scholar
  43. 43.
    Ge L, Ran R, Zhang K, Liu S, Shao Z (2008) Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3−δ perovskite with improved operational stability. J Membr Sci 318:182–190CrossRefGoogle Scholar
  44. 44.
    Müller P, Störmer H, Dieterle L, Niedrig C, Ivers-Tiffée E, Gerthsen D (2012) Decomposition pathway of cubic Ba0.5Sr0.5Co0.8Fe0.2O3−δ between 700 °C and 1000 °C analyzed by electron microscopic techniques. Solid State Ionics 206:57–66CrossRefGoogle Scholar
  45. 45.
    Schindelin J, Rueden CT, Hiner MC, Eliceiri KW (2015) The ImageJ ecosystem: an open platform for biomedical image analysis. Mol Reprod Dev 82:518–529CrossRefGoogle Scholar
  46. 46.
    Wang L, Dou R, Bai M, Li Y, Hall D, Chen Y (2016) Characterisation of microstructure and hardness of perovskite-structured Ba0.5Sr0.5Co0.8Fe0.2O3−δ under different sintering conditions. J Eur Ceram Soc 36:1659–1667CrossRefGoogle Scholar
  47. 47.
    Chen P-L, Chen I-W (1996) Grain growth in CeO2: dopant effects, defect mechanism, and solute drag. J Am Ceram Soc 79:1793–1800CrossRefGoogle Scholar
  48. 48.
    Leib EW, Pasquarelli RM, do Rosário JJ, Dyachenko PN, Döring S, Puchert A, Petrov AY, Eich M, Schneider GA, Janssen R, Weller H, Vossmeyer T (2016) Yttria-stabilized zirconia microspheres: NOVEL building blocks for high-temperature photonics. J Mater Chem C 4:62–74CrossRefGoogle Scholar
  49. 49.
    Shirpour M, Rahmati B, Sigle W, van Aken PA, Merkle R, Maier J (2012) Dopant segregation and space charge effects in proton-conducting BaZrO3 perovskites. J Phys Chem C 116:2453–2461CrossRefGoogle Scholar
  50. 50.
    Boonlakhorn J, Kidkhunthod P, Putasaeng B, Yamwong T, Thongbai P, Maensiri S (2015) Effects of Y doping ions on microstructure, dielectric response, and electrical properties of Ca1−3x/2Yx Cu3Ti4O12 ceramics. J Mater Sci: Mater Electron 26:2329–2337Google Scholar
  51. 51.
    Mueller DN, De Souza RA, Weirich TE, Roehrens D, Mayer J, Martin M (2010) A kinetic study of the decomposition of the cubic perovskite-type oxide BaxSr1−xCo0.8Fe0.2v (BSCF) (x = 0.1 and 0.5). Phys Chem Chem Phys 12:10320–10328CrossRefGoogle Scholar
  52. 52.
    Lumeij M, Gilleßen M, Bouwmeester H, Markus T, Barthel J, Roitsch S, Mayer J, Dronskowski R (2013) Influence of the Ba2+/Sr2+ content and oxygen vacancies on the stability of cubic BaxSr1−xCo0.75Fe0.25O3−δ. Phys Chem Chem Phys 16:1333–1338CrossRefGoogle Scholar
  53. 53.
    Trincavelli J, Limandri S, Bonetto R (2014) Standardless quantification methods in electron probe microanalysis. Spectrochim Acta Part B 101:76–85CrossRefGoogle Scholar
  54. 54.
    Chen M, Hallstedt B, Gauckler LJ (2003) Thermodynamic assessment of the Co-O system. J Phase Equilib 24:212–227CrossRefGoogle Scholar
  55. 55.
    Chen D, Huang C, Ran R, Park HJ, Kwak C, Shao Z (2011) New Ba0.5Sr0.5Co0.8Fe0.2O3−δ+Co3O4 composite electrode for IT-SOFCs with improved electrical conductivity and catalytic activity. Electrochem Commun 13:197–199CrossRefGoogle Scholar
  56. 56.
    Haworth P, Smart S, Glasscock J, Diniz da Costa JC (2012) High performance yttrium-doped BSCF hollow fibre membranes. Sep Purif Technol 94:16–22CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Matthias Meffert
    • 1
  • Lana-Simone Unger
    • 2
  • Lukas Grünewald
    • 1
  • Heike Störmer
    • 1
  • Stefan F. Wagner
    • 2
  • Ellen Ivers-Tiffée
    • 2
  • Dagmar Gerthsen
    • 1
  1. 1.Laboratorium für ElektronenmikroskopieKarlsruher Institut für Technologie (KIT)KarlsruheGermany
  2. 2.Institut für Angewandte Materialien-Werkstoffe der Elektrotechnik (IAM-WET)Karlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations