Advertisement

Thermophysical properties of paraffin-based electrically insulating nanofluids containing modified graphene oxide

  • 438 Accesses

  • 3 Citations

Abstract

Electrically insulating nanofluids were prepared by dispersing modified graphene oxide nanosheets in an insulating medium (paraffin oil) by means of ultrasonication and without using any surfactant. Graphene oxide (GO) nanosheets were synthesized by an improved Hummers method. To improve the compatibility of the GO nanosheets with the oil, they were functionalized by treating with an alkylamine. After preparing the nanofluids, their properties such as thermal conductivity, viscosity and insulating properties were investigated experimentally at different concentrations. The results demonstrated that the thermal conductivity of the oil is enhanced with the addition of the nanosheets and increases with the increasing concentration. Comparison with other similar studies showed that at very low concentrations, the enhancement of thermal conductivity of nanofluids containing modified GO nanosheets is higher. Furthermore, rheological tests demonstrated that the viscosity of the nanofluids is lower in comparison with base oil, which can be considered as an advantage in terms of their thermal performance. Based on the experiments, it is found that the addition of the nanosheets leads to deterioration of the insulating properties of the oil, but available standards show that the prepared nanofluids are still suitable for use in industrial applications. The experimental results were also compared with the theoretical models. The results show that the Nan’s model gives better predictions of the thermal conductivity of these nanofluids in comparison with the classic model of Maxwell.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Abbreviations

k s :

The thermal conductivity of solid nanoparticles, W/m K

k bf :

The thermal conductivity of base fluid, W/m K

k nf :

The thermal conductivity of nanofluid, W/m K

d :

Interlayer distance, Å

l C :

The length of the hydrocarbon chain of amine molecule, Å

n :

Number of carbon atoms

L ii :

Geometrical factor

ϕ :

Particle volume fraction

θ :

The hydrocarbon chain inclination

bf:

Base fluid

nf:

Nanofluid

s:

Solid nanoparticles

GO:

Graphene oxide

AGO:

Alkylated graphene oxide

MWCNT:

Multi-walled carbon nanotube

FEG-SEM:

Field emission gun-scanning electron microscopy

FTIR:

Fourier transform-infrared spectroscopy

EDX:

Energy-dispersive X-ray analysis

XRD:

X-ray diffraction

DMF:

Dimethyl formamide

THW:

Transient hot-wire technique

DF:

Dissipation factor

IEC:

International electrotechnical commission

References

  1. 1

    Eastman JA et al (1996) Enhanced thermal conductivity through the development of nanofluids. MRS proceedings, vol 457. Cambridge University Press

  2. 2

    Das SK, Choi SUS, Yu W, Pradeep T (2008) Nanofluids: science and technology. Wiley-Interscience Hoboken, New Jersey

  3. 3

    Eastman J, Choi S, Li S et al (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720. doi:10.1063/1.1341218

  4. 4

    Saleh R, Putra N, Wibowo RE et al (2014) Titanium dioxide nanofluids for heat transfer applications. Exp Therm Fluid Sci 52:19–29. doi:10.1016/j.expthermflusci.2013.08.018

  5. 5

    Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ-Fed 231:99–105

  6. 6

    Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids: a review. Heat Transf Eng 27:3–19. doi:10.1080/01457630600904593

  7. 7

    Zhu H, Li C, Wu D et al (2010) Preparation, characterization, viscosity and thermal conductivity of CaCO3 aqueous nanofluids. Sci China Technol Sci 53:360–368. doi:10.1007/s11431-010-0032-5

  8. 8

    Peng W, Minli B, Jizu L (2014) Numerical study on the microflow mechanism of heat transfer enhancement in nanofluids, Nanoscale and Microscale Thermophysical Engineering 18. http://www.sciencedirect.com/science/journal/08941777/68/supp/C:113–136. doi:10.1080/15567265.2013.856498

  9. 9

    Krishnamurthy S, Bhattacharya P, Phelan PE (2006) Enhanced mass transport in nanofluids. Nano Lett 6:419–423. doi:10.1021/nl0522532

  10. 10

    Olle B, Bucak S, Holmes TC et al (2006) Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Ind Eng Chem Res 45:4355–4363. doi:10.1021/ie051348b

  11. 11

    Phan HT, Caney N, Marty P et al (2010) Surface coating with nanofluids: the effects on pool boiling heat transfer. Nanoscale Microscale Thermophys Eng 14:229–244. doi:10.1080/15567265.2010.502926

  12. 12

    Peng DX, Chen CH (2010) Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind Lubr Tribol 62:111–120. doi:10.1108/00368791011025656

  13. 13

    Choi C, Yoo HS, Oh JM (2008) Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Curr Appl Phys 8:710–712. doi:10.1016/j.cap.2007.04.060

  14. 14

    Chiesa M, Das SK (2009) Experimental investigation of the dielectric and cooling performance of colloidal suspensions in insulating media. Colloid Surf A 335:88–97. doi:10.1016/j.colsurfa.2008.10.044

  15. 15

    Botha SS, Ndungu P, Bladergroen BJ (2011) Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind Eng Chem Res 50:3071–3077. doi:10.1021/ie101088x

  16. 16

    Jin H, Andritsch T, Morshuis PHF, Smit JJ (2012) AC breakdown voltage and viscosity of mineral oil based SiO2 nanofluids. In: Electrical insulation and dielectric phenomena (CEIDP), 2012 annual report conference on, IEEE, 902–905. doi:10.1109/CEIDP.2012.6378927

  17. 17

    Mergos JA, Athanassopoulou MD, Argyropoulos TG, Dervos CT (2012) Dielectric properties of nanopowder dispersions in paraffin oil. IEEE Trans Dielectr Electr Insul 19:1502–1507. doi:10.1109/TDEI.2012.6311493

  18. 18

    Jin H, Andritsch T, Tsekmes IA et al (2014) Properties of mineral oil based silica nanofluids. IEEE Trans Dielectr Electr Insul 21:1100–1108. doi:10.1109/TDEI.2014.6832254

  19. 19

    Fofana I (2013) 50 years in the development of insulating liquids. IEEE Electr Insul Mag 29:13–25. doi:10.1109/MEI.2013.6585853

  20. 20

    Hwang Y, Park HS, Lee JK, Jung WH (2006) Thermal conductivity and lubrication characteristics of nanofluids. Curr Appl Phys 6:e67–e71. doi:10.1016/j.cap.2006.01.014

  21. 21

    Morozov SV, Novoselov KS, Katsnelson MI et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602–016607. doi:10.1103/PhysRevLett.100.016602

  22. 22

    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530. doi:10.1021/ma100572e

  23. 23

    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849

  24. 24

    Balandin AA, Gosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. doi:10.1021/nl0731872

  25. 25

    Ma W, Yang F, Shi J et al (2013) Silicone based nanofluids containing functionalized graphene nanosheets. Colloid Surf A 431:120–126. doi:10.1016/j.colsurfa.2013.04.031

  26. 26

    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. doi:10.1039/B917103G

  27. 27

    Huang X, Liu F, Jiang P (2013) Is graphene oxide an insulating material? In: Solid dielectrics (ICSD), 2013 IEEE international conference on, IEEE, 904–907. doi:10.1109/ICSD.2013.6619690

  28. 28

    Lin Z, Liu Y, Wong C (2010) Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film. Langmuir 26:16110–16114. doi:10.1021/la102619n

  29. 29

    Marcano DC, Kosynkin DV, Berlin JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. doi:10.1021/nn1006368

  30. 30

    Yu W, Xie H, Chen W (2010) Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets. J Appl Phys 107:094317. doi:10.1063/1.3372733

  31. 31

    Zhang SP, Song HO (2012) Supramolecular graphene oxide-alkylamine hybrid materials: variation of dispersibility and improvement of thermal stability. New J Chem 36:1733–1738. doi:10.1039/C2NJ40214A

  32. 32

    Bourlinos AB, Gournis D, Petridis D (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055. doi:10.1021/la026525h

  33. 33

    Lin Z, Liu Y, Li Z, Wong C (2011) Novel preparation of functionalized graphene oxide for large scale, low cost, and self-cleaning coatings of electronic devices. In: Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st. IEEE 358–362. doi:10.1109/ECTC.2011.5898538

  34. 34

    Li W, Tang XZ, Zhang HB (2011) Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 49:4724–4730. doi:10.1016/j.carbon.2011.06.077

  35. 35

    Gutiérrez MP, Li H, Patton J (2002) Thin film surface resistivity. Materials Engineering 0-24

  36. 36

    Nagasaka Y, Nagashima A (1981) Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method. J Phys E: Sci Instrum 14(1435–1440):1981. doi:10.1088/0022-3735/14/12/020

  37. 37

    Paul G, Chopkar M, Manna I, Das PK (2010) Techniques for measuring the thermal conductivity of nanofluids: a review. Renew Sust Energy Rev 14:1913–1924. doi:10.1016/j.rser.2010.03.017

  38. 38

    Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568. doi:10.1016/j.ijthermalsci.2007.05.004

  39. 39

    IEC 60274 (2004) Insulating liquids: measurement of relative permittivity, dielectric dissipation factor (tan δ) and d.c. resistivity

  40. 40

    Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998. doi:10.1016/j.carbon.2008.08.013

  41. 41

    Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212. doi:10.1007/s12274-008-8021-8

  42. 42

    Liu H, Zhang L, Guo Y et al (2013) Reduction of graphene oxide to highly conductive graphene by Lawesson’s reagent and its electrical applications. J Mater Chem C 1:3104–3109. doi:10.1039/C3TC00067B

  43. 43

    Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152. doi:10.1016/j.carbon.2009.11.037

  44. 44

    Tessonnier JP, Barteau MA (2012) Dispersion of alkyl-chain-functionalized reduced graphene oxide sheets in nonpolar solvents. Langmuir 28:6691–6697. doi:10.1021/la2051614

  45. 45

    Choudhary S, Mungse HP, Khatri OP (2012) Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications. J Mater Chem 22:21032–21039. doi:10.1039/C2JM34741E

  46. 46

    Pavia D, Lampman G, Kriz G, Vyvyan J (2008) Introduction to spectroscopy, 4th edn. Cengage Learning, USA

  47. 47

    Pham VH, Cuong TV, Hur SH et al (2011) Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone. J Mater Chem 21:3371–3377. doi:10.1039/C0JM02790A

  48. 48

    Feng H, Cheng R, Zhao X et al (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539–1545. doi:10.1038/ncomms2555

  49. 49

    Su X, Wang G, Li W et al (2013) A simple method for preparing graphene nano-sheets at low temperature. Adv Powder Technol 24:317–323. doi:10.1016/j.apt.2012.08.003

  50. 50

    Zhang DD, Zu SZ, Han BH (2009) Inorganic–organic hybrid porous materials based on graphite oxide sheets. Carbon 47:2993–3000. doi:10.1016/j.carbon.2009.06.052

  51. 51

    Firdhouse MJ, Lalitha P (2013) Eco-friendly synthesis of graphene using the aqueous extract of Amaranthus dubius. Carbon Sci Technol 5:253–259

  52. 52

    http://www.unamur.be/services/microscopie/sme-documents/Energy-20table-20for-20EDS-20analysis-1.pdf. Accessed 21 June 2016

  53. 53

    Marcinek M, Song X, Kostecki R (2007) Microwave plasma chemical vapor deposition of nano-composite C/Pt thin-films. Electrochem Commun 9:1739–1743. doi:10.1016/j.elecom.2007.03.030

  54. 54

    Wang S, Shi G (2007) Uniform silver/polypyrrole core-shell nanoparticles synthesized by hydrothermal reaction. Mater Chem Phys 102:255–259. doi:10.1016/j.matchemphys.2006.12.014

  55. 55

    Yang H, Li F, Shan C et al (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638. doi:10.1039/b901421g

  56. 56

    Chandra V, Kim KS (2011) Highly selective adsorption of Hg 2+ by a polypyrrole–reduced graphene oxide composite. Chem Commun 47:3942–3944. doi:10.1039/C1CC00005E

  57. 57

    Vo TH, Shekhirev M, Kunkel DA et al (2014) Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons. Chem Commun 50:4172–4174. doi:10.1039/C4CC00885E

  58. 58

    http://www.ammrf.org.au/myscope/analysis/eds/spectralartefacts/. Accessed 23 Aug 2016

  59. 59

    Park OK, Hahm MG, Lee S et al (2012) In situ synthesis of thermochemically reduced graphene oxide conducting nanocomposites. Nano Lett 12:1789–1793. doi:10.1021/nl203803d

  60. 60

    Compton OC, Dikin DA, Putz KW et al (2010) Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 22:892–896. doi:10.1002/adma.200902069

  61. 61

    Mukherjee S, Paria S (2013) Preparation and stability of nanofluids: a review. IOSR J Mech Civ Eng 9:63–69. doi:10.9790/1684-0926369

  62. 62

    Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171. doi:10.1023/A:1024438603801

  63. 63

    Gupta A, Kumar R (2007) Role of Brownian motion on the thermal conductivity enhancement of nanofluids. Appl Phys Lett 91:223102. doi:10.1063/1.2816903

  64. 64

    Karthikeyan NR, Philip J, Raj B (2008) Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys 109:50–55. doi:10.1016/j.matchemphys.2007.10.029

  65. 65

    Chandrasekar M, Suresh S (2009) A review on the mechanisms of heat transport in nanofluids. Heat Transf Eng 30:1136–1150. doi:10.1080/01457630902972744

  66. 66

    Yu W, Xie H, Wang X (2011) Enhanced thermal conductivity of liquid Paraffin based nanofluids containing copper nanoparticles. J Disper Sci Technol 32:948–951. doi:10.1080/01932691.2010.488503

  67. 67

    Sonawane SS, Khedkar RS, Wasewar KL (2015) Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons. J Exp Nanosci 10:310–322. doi:10.1080/17458080.2013.832421

  68. 68

    Moghadassi AR, Hosseini SM, Henneke DE (2010) Effect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluids. Ind Eng Chem Res 49:1900–1904. doi:10.1021/ie901060e

  69. 69

    Khedkar RS, Kiran AS, Sonawane SS et al (2013) Thermo-physical characterization of paraffin based Fe3O4 nanofluids. Procedia Eng 51:342–346. doi:10.1016/j.proeng.2013.01.047

  70. 70

    Yu W, Xie H, Bao D (2009) Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology 21:055705. doi:10.1088/0957-4484/21/5/055705

  71. 71

    Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. doi:10.1016/j.carbon.2007.02.034

  72. 72

    Mehrali M, Sadeghinezhad E, Latibari ST et al (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett 9:1–12. doi:10.1186/1556-276X-9-15

  73. 73

    Gandhi KSK, Velayutham M, Das SK, Thirumalachari S (2011) Measurement of thermal and electrical conductivities of graphene nanofluids. In: 3rd micro and nano flows conference

  74. 74

    Teng KL, Hsiao PY, Hung SW (2008) Enhanced thermal conductivity of nanofluids diagnosis by molecular dynamics simulations. J Nanosci Nanotechnol 8:3710–3718. doi:10.1166/jnn.2008.007

  75. 75

    Wada Y, Nagasaka Y, Nagashima A (1985) Measurements and correlation of the thermal conductivity of liquid n-paraffin hydrocarbons and their binary and ternary mixtures. Int J Thermophys 6:251–265. doi:10.1007/BF00522147

  76. 76

    Tanaka Y, Itani Y, Kubota H, Makita T (1988) Thermal conductivity of five normal alkanes in the temperature range 283–373 K at pressures up to 250 MPa. Int J Thermophys 9:331–350. doi:10.1007/BF00513075

  77. 77

    Assael MJ, Charitidou E, Nieto de Castro CA, Wakeham WA (1987) The thermal conductivity of n-hexane, n-heptane, and n-decane by the transient hot-wire method. Int J Thermophys 8:663–670. doi:10.1007/BF00500786

  78. 78

    Watanabe H, Seong DJ (2002) The thermal conductivity and thermal diffusivity of liquid n-alkanes: Cn H2n+2 (n = 5 to 10) and Toluene. Int J Thermophys 23:337–356. doi:10.1023/A:1015158401299

  79. 79

    Charitidou E, Molidou C, Assael MJ (1988) The thermal conductivity and viscosity of benzene. Int J Thermophys 9:37–45. doi:10.1007/BF00503998

  80. 80

    Assael MJ, Dalaouti NK (2001) Thermal conductivity of toluene + cyclopentane mixtures: measurements and prediction. Int J Thermophys 22:659–678. doi:10.1023/A:1010759629398

  81. 81

    Charitidou E, Dix M, Assael MJ, Nieto de Castro CA, Wakeham WA (1987) A computer-controlled instrument for the measurement of the thermal conductivity of liquids. Int J Thermophys 8:511–519. doi:10.1007/BF00503639

  82. 82

    Venerus DC, Kabadi MS, Lee S, Perez-Luna V (2006) Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys 100:094310. doi:10.1063/1.2360378

  83. 83

    Ju YS, Kim J, Hung MT (2008) Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J Heat Transf 130:092403. doi:10.1115/1.2945886

  84. 84

    Tavman I, Turgut A (2010) An investigation on thermal conductivity and viscosity of water based nanofluids. Microfluid Based Microsyst. doi:10.1007/978-90-481-9029-4_8

  85. 85

    Aravind SSJ, Ramaprabhu S (2013) Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. RSC Adv 3:4199–4206. doi:10.1039/C3RA22653K

  86. 86

    Chon CH, Kihm KD (2005) Thermal conductivity enhancement of nanofluids by Brownian motion. J Heat Transf 127:810. doi:10.1115/1.2033316

  87. 87

    Tsai TH, Kuo LS, Chen PH, Yang CT (2008) Effect of viscosity of base fluid on thermal conductivity of nanofluids. Appl Phys Lett 93:233121. doi:10.1063/1.3046732

  88. 88

    Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

  89. 89

    Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692–6699. doi:10.1063/1.365209

  90. 90

    Yu W, Xie H, Wang X, Wang X (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375:1323–1328. doi:10.1016/j.physleta.2011.01.040

  91. 91

    Buschmann MH (2012) Thermal conductivity and heat transfer of ceramic nanofluids. Int J Therm Sci 62:19–28. doi:10.1016/j.ijthermalsci.2011.09.019

  92. 92

    Moghaddam MB, Goharshadi EK, Entezari MH, Nancarrow P (2013) Preparation, characterization, and rheological properties of graphene–glycerol nanofluids. Chem Eng J 231:365–372. doi:10.1016/j.cej.2013.07.006

  93. 93

    Hadadian M, Goharshadi EK, Youssefi A (2014) Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J Nanopart Res 16:1–17. doi:10.1007/s11051-014-2788-1

  94. 94

    Mahbubul IM, Saidur R, Amalina MA (2012) Latest developments on the viscosity of nanofluids. Int J Heat Mass Trans 55:874–885. doi:10.1016/j.ijheatmasstransfer.2011.10.021

  95. 95

    Ettefaghi E, Rashidi A, Ahmadi H et al (2013) Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int Commun Heat Mass Transf 48:178–182. doi:10.1016/j.icheatmasstransfer.2013.08.004

  96. 96

    Tajik Jamal-Abad M, Dehghan M, Saedodin S (2014) An experimental investigation of rheological characteristics of non-Newtonian nanofluids. J Heat Mass Transf Res 1:17–23

  97. 97

    Mehrali M, Sadeghinezhad E, Latibari ST (2014) Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. J Mater Sci 49:7156–7171. doi:10.1007/s10853-014-8424-8

  98. 98

    Mehrali M, Sadeghinezhad E, Rosen MA (2015) Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids. Exp Therm Fluid Sci 68:100–108. doi:10.1016/j.expthermflusci.2015.03.012

  99. 99

    Bui TS, Kim J, Jung E (2013) High optical density and low dielectric constant black matrix containing graphene oxide and carbon black on color filters. Displays 34:192–199. doi:10.1016/j.displa.2013.03.003

  100. 100

    Gray IAR (2008) Dissipation Factor, Power Factor, and Relative Permittivity (Dielectric Constant) http://www.satcs.co.za/TanD-Res-info.pdf. Accessed 21 June 2016

Download references

Acknowledgements

The authors express their gratitude to the University of Tabriz for extending their support of this project. The authors also wish to thank Dr. Abbasi (at the Sahand University of Technology) for his assistance with rheological tests.

Author information

Correspondence to Hamid Erfan-Niya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This paper is dedicated to the memory of Professor Dr. Ali Akbar Entezami who had a great influence on the development of chemistry and polymer science in Iran (passed away: July 08, 2015; Tabriz, Islamic Republic of Iran).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 1842 kb)

Supplementary material 1 (MPG 1842 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aref, A.H., Entezami, A.A., Erfan-Niya, H. et al. Thermophysical properties of paraffin-based electrically insulating nanofluids containing modified graphene oxide. J Mater Sci 52, 2642–2660 (2017). https://doi.org/10.1007/s10853-016-0556-6

Download citation

Keywords

  • Thermal Conductivity
  • Graphene Oxide
  • Brownian Motion
  • Electrical Resistivity
  • Base Fluid