Advertisement

Journal of Materials Science

, Volume 52, Issue 4, pp 2232–2240 | Cite as

Microstructure and mechanical properties of Li0.33La0.567TiO3

  • Karl G. Schell
  • Fabian Lemke
  • Ethel C. Bucharsky
  • A. Hintennach
  • M. J. Hoffmann
Original Paper

Abstract

Mechanical properties of conventional sintered Li0.33La0.567TiO3 (LLTO) are presented with focus on the correlation with the microstructural appearance. Variation in density, grain size, and second phase are achieved by changing the lithium to lanthanum ratio and sintering conditions. All samples show varying amounts of a second phase which is identified as TiO2. These inert particles have no effect on the measured mechanical properties. In contrast, a high sensitivity to changes in the microstructural evolution is found. Therefore, density and grain size are the important microstructural features to control both electrical and mechanical properties. For stoichiometric, a dense LLTO a Young’s modulus of 200 GPa, K IC of 1.2 MPam0.5, and a Vickers hardness of 8.4 GPa are measured. For all dense samples, the characteristic bending strength shows values around 150 MPa and Weibull modulus of m = 7–9. Deviations from these results are explained by microstructural events like second phases, density, or grain size.

Notes

Acknowledgements

The authors thank Mr. Jakob Rohmer for his assistance in processing and characterization of the materials.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15:3974–3990. doi: 10.1021/cm0300516 CrossRefGoogle Scholar
  2. 2.
    Thangadurai V, Weppner W (2006) Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 12:81–92. doi: 10.1007/s11581-006-0013-7 CrossRefGoogle Scholar
  3. 3.
    Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ion 180:911–916. doi: 10.1016/j.ssi.2009.03.022 CrossRefGoogle Scholar
  4. 4.
    Inaguma Y, Liquan C, Itoh M et al (1993) High ionic conductivity in lithium lanthanum titanate. Solid State Commun 86:689–693. doi: 10.1016/0038-1098(93)90841-A CrossRefGoogle Scholar
  5. 5.
    Inaguma Y, Chen L, Itoh M, Nakamura T (1994) Candidate compounds with perovskite structure for high lithium ionic conductivity. Solid State Ion 70–71:196–202. doi: 10.1016/0167-2738(94)90309-3 CrossRefGoogle Scholar
  6. 6.
    Inaguma Y, Yu J, Katsumata T, Itoh M (1997) Lithium ion conductivity in a perovskite lanthanum lithium titanate single crystal. J Ceram Soc Jpn 105:548–550. doi: 10.2109/jcersj.105.548 CrossRefGoogle Scholar
  7. 7.
    Kawai H, Kuwano J (1994) Lithium ion conductivity of A-site deficient perovskite solid solution La0.67−xLi3xTiO3. J Electrochem Soc 141:L78–L79. doi: 10.1149/1.2055043 CrossRefGoogle Scholar
  8. 8.
    Ban CW, Choi GM (2001) The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ion 140:285–292. doi: 10.1016/S0167-2738(01)00821-9 CrossRefGoogle Scholar
  9. 9.
    Aguesse F, Roddatis V, Roqueta J et al (2015) Microstructure and ionic conductivity of LLTO thin films: influence of different substrates and excess lithium in the target. Solid State Ion 272:1–8. doi: 10.1016/j.ssi.2014.12.005 CrossRefGoogle Scholar
  10. 10.
    Munz D, Fett T (1999) Ceramics: mechanical properties, failure behaviour, materials selection, vol 2nd print. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Chiang Y, Birnie DP, Kingery WD (1997) Physical ceramics. Wiley, New YorkGoogle Scholar
  12. 12.
    Cho Y-H, Wolfenstine J, Rangasamy E et al (2012) Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3. J Mater Sci 47:5970–5977. doi: 10.1007/s10853-012-6500-5 CrossRefGoogle Scholar
  13. 13.
    Hupfer T, Bucharsky EC, Schell KG et al (2016) Evolution of microstructure and its relation to ionic conductivity. Solid State Ion 288:235–239. doi: 10.1016/j.ssi.2016.01.036 CrossRefGoogle Scholar
  14. 14.
    Christensen J, Newman J (2006) Stress generation and fracture in lithium insertion materials. J Solid State Electrochem 10:293–319. doi: 10.1007/s10008-006-0095-1 CrossRefGoogle Scholar
  15. 15.
    Rohmer J (2015) Herstellung und mechanische Charakterisierung von Lithium–Lanthan–Titanat. Karlsruhe Institute of Technology, KarlsruheGoogle Scholar
  16. 16.
    DIN EN 843-2:2007-03 (2007) Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature - Part 2: Determination of Young’s modulus, shear modulus; German version EN 843-2:2006 and Poisson’s ratioGoogle Scholar
  17. 17.
    DIN EN 843-1:2008-08 (2008) Advanced technical ceramics - Mechanical properties of monolithic ceramics at room temperature - Part 1: Determination of flexural strength; German version EN 843-1:2006Google Scholar
  18. 18.
    DIN CEN/TS 14425-5:2004-10 (2004) Advanced technical ceramics - Test methods for determination of fracture toughness of monolitic ceramics - Part 5: Single-edge vee-notch beam (SEVNB) method; German version CEN/TS 14425-5:2004Google Scholar
  19. 19.
    Coble RL, Kingery WD (1956) Effect of porosity on physical properties of sintered alumina. J Am Ceram Soc 39:377–385. doi: 10.1111/j.1151-2916.1956.tb15608.x CrossRefGoogle Scholar
  20. 20.
    Dean EA, Lopez JA (1983) Empirical dependence of elastic moduli on porosity for ceramic materials. J Am Ceram Soc 66:366–370. doi: 10.1111/j.1151-2916.1983.tb10051.x CrossRefGoogle Scholar
  21. 21.
    Fredel MC, Boccaccini AR (1996) Processing and mechanical properties of biocompatible Al2O3 platelet-reinforced TiO2. J Mater Sci 31:4375–4380. doi: 10.1007/BF00356463 CrossRefGoogle Scholar
  22. 22.
    Höfler HJ, Averback RS (1990) Grain growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture toughness. Scr Metall Mater 24:2401–2406. doi: 10.1016/0956-716X(90)90101-L CrossRefGoogle Scholar
  23. 23.
    Kim HS, Bush MB (1999) The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct Mater 11:361–367. doi: 10.1016/S0965-9773(99)00052-5 CrossRefGoogle Scholar
  24. 24.
    Chaim R, Hefetz M (2004) Effect of grain size on elastic modulus and hardness of nanocrystalline ZrO2–3 wt% Y2O3 ceramic. J Mater Sci 39:3057–3061. doi: 10.1023/B:JMSC.0000025832.93840.b0 CrossRefGoogle Scholar
  25. 25.
    Hall EO (1954) Variation of hardness of metals with grain size. Nature 173:948–949. doi: 10.1038/173948b0 CrossRefGoogle Scholar
  26. 26.
    Krell A, Blank P (1995) Grain size dependence of hardness in dense submicrometer alumina. J Am Ceram Soc 78:1118–1120. doi: 10.1111/j.1151-2916.1995.tb08452.x CrossRefGoogle Scholar
  27. 27.
    Rice RW, Wu CC, Borchelt F (1994) Hardness-grain-size relations in ceramics. J Am Ceram Soc 77:2539–2553. doi: 10.1111/j.1151-2916.1994.tb04641.x CrossRefGoogle Scholar
  28. 28.
    Mayo MJ, Siegel RW, Narayanasamy A, Nix WD (1990) Mechanical properties of nanophase TiO2 as determined by nanoindentation. J Mater Res 5:1073–1082. doi: 10.1557/JMR.1990.1073 CrossRefGoogle Scholar
  29. 29.
    Cooper C, Sutorik AC, Wright J et al (2014) Mechanical properties of hot isostatically pressed Li0.35 La0.55 TiO3. Adv Eng Mater 16:755–759. doi: 10.1002/adem.201400071 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Karl G. Schell
    • 1
  • Fabian Lemke
    • 1
  • Ethel C. Bucharsky
    • 1
  • A. Hintennach
    • 2
  • M. J. Hoffmann
    • 1
  1. 1.Institute for Applied Materials – Ceramic Materials and TechnologiesKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Daimler AGStuttgartGermany

Personalised recommendations