Journal of Materials Science

, Volume 52, Issue 4, pp 2091–2102 | Cite as

Electrosprayed catalyst layers based on graphene–carbon black hybrids for the next-generation fuel cell electrodes

  • Lale Işıkel Şanlı
  • Begüm Yarar
  • Vildan Bayram
  • Selmiye Alkan Gürsel
Original Paper


Here, we report a novel electrode structure with graphene and graphene–carbon black hybrids by electrospraying for polymer electrolyte membrane fuel cells. After syntheses of platinum (Pt)/partially reduced graphene oxide (rGO) and Pt/r-GO/carbon black (CB) hybrid electrocatalysts, suspensions of synthesized electrocatalyst inks were prepared with Nafion® ionomer and poly(vinylidene fluoride-co-hexafluoropropylene) and electrosprayed over carbon paper to form electrodes. Electrosprayed catalyst layer exhibited uniform and small size Pt distribution. As the graphene content increases micrometer-sized droplet, pore formation and surface roughness of the electrode increase. Thus, an open porous electrode structure which is favorable for mass transport is achieved by electrospraying. The maximum power densities, 324 mW cm−2 for Pt/rGO and 441 mW cm−2 for Pt/rGO/CB electrosprayed electrodes, were achieved at a relatively low catalyst loading.



It is gratefully acknowledged that this research has received funding from the European Union Seventh Framework Programme under grant agreement n°604391 and n°696656 Graphene Flagship. The authors would like to thank Assoc. Prof. Dr. Muhsin Mazman, Mutlu Akü ve Malz. San. A.Ş. R&D Center, for the assistance in porosity measurements.


  1. 1.
    Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRefGoogle Scholar
  2. 2.
    Sharma R, Cherusseri J, Kar KK (2015) Polymer electrolyte membrane fuel cells: role of carbon nanotubes/graphene in cathode catalysis. Handbook of polymer nanocomposites, processing, performance and application. Springer, Berlin, pp 361–390Google Scholar
  3. 3.
    Quesnel E et al (2015) Graphene-based technologies for energy applications, challenges and perspectives. 2D Mater 2:030204CrossRefGoogle Scholar
  4. 4.
    Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube and nanofiber supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36:507–522CrossRefGoogle Scholar
  5. 5.
    Bayrakçeken A, Smirnova A, Kitkamthorn U, Aindow M, Türker L, Eroğlu I, Erkey C (2006) Pt-based electrocatalysts for polymer electrolyte membrane fuel cells prepared by supercritical deposition technique. J Power Sources 179:532–540CrossRefGoogle Scholar
  6. 6.
    Daş E, Gürsel SA, Şanli LI, Yurtcan AB (2016) Comparison of two different catalyst preparation methods for graphene nanoplatelets supported platinum catalysts. Int J Hydrog Energy 41:9755–9761CrossRefGoogle Scholar
  7. 7.
    Zeng J, Su F, Lee JY, Zhao XS, Chen J, Jiang X (2007) Method for preparing highly dispersed Pt catalysts on mesoporous carbon support. J Mater Sci 42(17):7191–7197. doi: 10.1007/s10853-007-1571-4 CrossRefGoogle Scholar
  8. 8.
    Roller J, Neagu R, Orfino F, Maric R (2012) Supported and unsupported platinum catalysts prepared by a one-step dry deposition method and their oxygen reduction reactivity in acidic media. J Mater Sci 47:4604–4611. doi: 10.1007/s10853-012-6324-3 CrossRefGoogle Scholar
  9. 9.
    Zhao W, Zhou X, Xue Z, Wu B, Liu X, Lu X (2013) Electrodeposition of platinum nanoparticles on polypyrrole-functionalized graphene. J Mater Sci 48:2566–2573. doi: 10.1007/s10853-012-7047-1 CrossRefGoogle Scholar
  10. 10.
    Martin S, Garcia-Ybarra PL, Castillo JL (2010) Electrospray deposition of catalyst layers with ultra-low Pt loadings for PEM fuel cells cathodes. J Power Sources 195:2443–2449CrossRefGoogle Scholar
  11. 11.
    Martin S, Martinez-Vazquez B, Garcia-Ybarra PL, Castillo JL (2013) Peak utilization of catalyst with ultra-low Pt loaded PEM fuel cell electrodes prepared by the electrospray method. J Power Sources 229:179–184CrossRefGoogle Scholar
  12. 12.
    Wang X, Richey FW, Wujcik KH, Elabd YA (2014) Ultra-low platinum loadings in polymer electrolyte membrane fuel cell electrodes fabricated via simultaneous electrospinning/electrospraying method. J Power Sources 264:42–48CrossRefGoogle Scholar
  13. 13.
    Tang H, Yang C, Lin Z, Yang Q, Kang F, Wong CP (2015) Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors. Nanoscale 7:9133–9139CrossRefGoogle Scholar
  14. 14.
    Wang X, Li W, Chen Z, Waje M, Yan Y (2006) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158:154–159CrossRefGoogle Scholar
  15. 15.
    Rocco AM, da Silva CA, Macedo MI, Maestro LF, Herbst MH, Solórzano G, Xavier AL (2008) Purification of catalytically produced carbon nanotubes for use as support for fuel cell cathode Pt catalyst. J Mater Sci 43:557–567. doi: 10.1007/s10853-007-1779-3 CrossRefGoogle Scholar
  16. 16.
    Takenaka S, Miyamoto H, Utsunomiya Y, Matsune H, Kishida M (2014) Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs. J Phys Chem C 118(2):774–783CrossRefGoogle Scholar
  17. 17.
    Li X, Wei J, Chai Y, Zhang S, Zhou M (2015) Different polyaniline/carbon nanotube composites as Pt catalyst supports for methanol electro-oxidation. J Mater Sci 50:1159–1168. doi: 10.1007/s10853-014-8672-7 CrossRefGoogle Scholar
  18. 18.
    Job N, Maillard F, Marie J, Berthon-Fabry S, Pirard JP, Chatenet M (2009) Electrochemical characterization of Pt/carbon xerogel and Pt/carbon aerogel catalysts: first insights into the influence of the carbon texture on the Pt nanoparticle morphology and catalytic activity. J Mater Sci 44:6591–6600. doi: 10.1007/s10853-009-3581-x CrossRefGoogle Scholar
  19. 19.
    Zhang L, Aboagye A, Kelkar A et al (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. doi: 10.1007/s10853-013-7705-y CrossRefGoogle Scholar
  20. 20.
    Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB (2012) Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1:534–551CrossRefGoogle Scholar
  21. 21.
    Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794CrossRefGoogle Scholar
  22. 22.
    Antolini E, Perez J (2011) The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. J Mater Sci 46:4435–4457. doi: 10.1007/s10853-011-5499-3 CrossRefGoogle Scholar
  23. 23.
    Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao XS (2013) Graphene-based electrodes for electrochemical energy storage. Energy Environ Sci 6:1388–1414CrossRefGoogle Scholar
  24. 24.
    Fan M, Feng ZQ, Zhu C, Chen X, Chen C, Yang J, Sun D (2016) Recent progress in 2D or 3D N-doped graphene synthesis and the characterizations, properties, and modulations of N species. J Mater Sci 51:10323–10349. doi: 10.1007/s10853-016-0250-8 CrossRefGoogle Scholar
  25. 25.
    Huang X, Zeng Z, Fan Z, Liu J, Zhang H (2012) Graphene-based electrodes. Adv Mater 24:5979–6004CrossRefGoogle Scholar
  26. 26.
    Park S, Shao Y, Wan H, Rieke PC, Viswanathan VV, Towne SA, Wang Y (2011) Design of graphene sheets-supported Pt catalyst layer in PEM fuel cells. Electrochem Commun 13:258–261CrossRefGoogle Scholar
  27. 27.
    Li Y, Li Y, Zhu E, McLouth T, Chiu CY, Huang X, Huang Y (2012) Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite. J Am Chem Soc 134:12326–12329CrossRefGoogle Scholar
  28. 28.
    Ghobadi S, Sadighikia S, Papila M, Cebebi FÇ, Gürsel SA (2015) Graphene-reinforced poly(vinyl alcohol) electrospun fibers as building blocks for high performance nanocomposites. RSC Adv 5:85009–85018CrossRefGoogle Scholar
  29. 29.
    Ghobadi S, Mehraen S, Bakhtiari R, Shamloo B, Sadhu V, Papila M, Cebebi FÇ, Gürsel SA (2016) PVA/PANI/rGO ternary electrospun mats as metal-free anti-bacterial substrates. RSC Adv 6:92434–92442CrossRefGoogle Scholar
  30. 30.
    Yang HN, Lee DC, Park KW, Kim WJ (2015) Platinum–boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell. Energy 89:500–510CrossRefGoogle Scholar
  31. 31.
    Şanlı LI, Bayram V, Ghobadi S, Düzen N, Gürsel SA (2016) Engineered catalyst layer design with graphene-carbon black hybrid supports for enhanced platinum utilization in PEM fuel cell. Int J Hydrog Energy (Published online). doi: 10.1016/j.ijhydene.2016.08.210 Google Scholar
  32. 32.
    Yu HM, Ziegler C, Oszcipok M, Zobel M, Hebling C (2006) Hydrophilicity and hydrophobicity study of catalyst layers in proton exchange membrane fuel cells. Electrochim Acta 51:1199–1207CrossRefGoogle Scholar
  33. 33.
    Leeuwner MJ, Wilkinson DP, Gyenge EL (2015) Novel graphene foam microporous layers for PEM fuel cells: interfacial characteristics and comparative performance. Fuel Cells. doi: 10.1002/fuce.201500031 Google Scholar
  34. 34.
    Kozbial A, Li Z, Conaway C, McGinley R, Dhingra S, Vahdat V, Li L (2014) Study on the surface energy of graphene by contact angle measurements. Langmuir 30:8598–8606CrossRefGoogle Scholar
  35. 35.
    Kim YG, Akbar ZA, Kim DY, Jo SM, Jang SY (2013) Aqueous dispersible graphene/Pt nanohybrids by green chemistry: application as cathodes for dye-sensitized solar cells. ACS Appl Mater Interfaces 5(6):2053–2061CrossRefGoogle Scholar
  36. 36.
    Zhai P, Lee CC, Chang YH, Liu C, Wei TC, Feng SP (2015) A significant improvement in the electrocatalytic stability of N-doped graphene nanosheets used as a counter electrode for [Co(bpy)3]3+/2+ based porphyrin-sensitized solar cells. ACS Appl Mater Interfaces 7(3):2116–2123CrossRefGoogle Scholar
  37. 37.
    Chaparro AM, Ferreira-Aparicio P, Folgado MA, Brightman E, Hinds G (2015) Study of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique. J Power Sources 325:609–619CrossRefGoogle Scholar
  38. 38.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRefGoogle Scholar
  39. 39.
    Şanlı LI, Bayram V, Yarar B, Ghobadi S, Gürsel SA (2016) Development of graphene supported platinum nanoparticles for polymer electrolyte membrane fuel cells: effect of support type and impregnation-reduction methods. Int J Hydrog Energy 41:3414–3427CrossRefGoogle Scholar
  40. 40.
    Brodt M, Wycisk R, Pintauro PN (2013) Nanofiber electrodes with low platinum loading for high power hydrogen/air PEM fuel cells. J Electrochem Soc 160:744–749CrossRefGoogle Scholar
  41. 41.
    Gatto I, Stassi A, Baglio V, Carbone A, Passalacqua E, Aricò AS, Schuster M, Bauer B (2015) Optimization of perfluorosulphonic ionomer amount in gas diffusion electrodes for PEMFC operation under automotive conditions. Electrochim Acta 165:450–455CrossRefGoogle Scholar
  42. 42.
    Brodt M, Han T, Dale N, Niangar E, Wycisk RP, Pintauro PN (2015) In-situ performance, and durability of nanofiber fuel cell electrodes. J Electrochem Soc 162:F84–F91CrossRefGoogle Scholar
  43. 43.
    Benitez R, Soler J, Daza L (2005) Electrochemical characterisation of Pt/C suspensions for the reduction of oxygen. J Power Sources 151:108–113CrossRefGoogle Scholar
  44. 44.
    Park S, Popov BN (2009) Effect of hydrophobicity and pore geometry in cathode GDL on PEM fuel cell performance. Electrochim Acta 54:3473–3479CrossRefGoogle Scholar
  45. 45.
    Park S, Popov BN (2011) Effect of a GDL based on carbon paper or cloth on PEM fuel cell performance. Fuel 90:436–440CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Springer TE, Wilson MS, Gottesfeld S (1993) Modeling and experimental diagnostics in polymer electrolyte fuel cells. J Electrochem Soc 140:3513–3526CrossRefGoogle Scholar
  48. 48.
    Weber AZ, Darling RM, Newman J (2004) Modeling two-phase behavior in PEFCs. J Electrochem Soc A 151:1715–1727CrossRefGoogle Scholar
  49. 49.
    Marinkas A, Hempelmann R, Heinzel A, Peinecke V, Radev I, Natter H (2015) Enhanced stability of multilayer graphene-supported catalysts for polymer electrolyte membrane fuel cell cathodes. J Power Sources 295:79–91CrossRefGoogle Scholar
  50. 50.
  51. 51.
    Rosas JM, Ruiz-Rosas R, Berenguer R, Cazorla-Amorós D, Morallón E, Nishihara H, Kyotani T, Rodríguez-Mirasol J, Cordero T (2016) Easy fabrication of superporous zeolite templated carbon electrodes by electrospraying on rigid and flexible substrates. J Mater Chem A. 4(12):4610–4618CrossRefGoogle Scholar
  52. 52.
    Tang H, Yang C, Lin Z, Yang Q, Kang F, Wong CP (2015) Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors. Nanoscale 7(20):9133–9139CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016
Corrected publication July/2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Authors and Affiliations

  • Lale Işıkel Şanlı
    • 1
  • Begüm Yarar
    • 2
  • Vildan Bayram
    • 2
  • Selmiye Alkan Gürsel
    • 1
    • 2
  1. 1.Sabanci University Nanotechnology Research and Application Center (SUNUM)Sabanci UniversityIstanbulTurkey
  2. 2.Faculty of Natural Science and EngineeringSabanci UniversityIstanbulTurkey

Personalised recommendations