Journal of Materials Science

, Volume 52, Issue 4, pp 1823–1830 | Cite as

Needle-disk electrospinning inspired by natural point discharge

  • Zhi Liu
  • Koon Keong Jeremy Ang
  • Jihuan HeEmail author
Original Paper


Point discharge is a natural phenomenon which principle and application are both under active investigation. In this work, a needle-disk electrode spinneret was designed through the combination of the point discharge concept and the merits of typical needleless electrospinning (disk as spinneret). The desired outcome for point electrode system is to produce a controllable process of jet formation, with respect to the control of jet site and amount of jets under a lower applied voltage value. Two comparisons were used: (i) in comparison to the typical needleless electrospinning method (disk electrospinning), the needle-disk electrospinning produce finer and more uniform nanofibers. Further numerical simulation results confirmed that the needle-disk electrode induced electric field intensity which is 5.33 times higher than that of disk electrode under the same parameters; (ii) both the numerical simulation and experimental results showed that needle-disk electrospinning can produce competitive quality of nanofibers accompanied by enhanced throughput, compared with the traditional single-needle electrospinning method. Finally, we demonstrate that needle-disk electrospinning produces nanofiber with super-high throughput of 13.5 g/h, which is 183 times higher than traditional electrospinning under similar spinning conditions.



This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and National Natural Science Foundation of China under Grant No. 11372205. We also like to acknowledge China Scholarship Council for the support and Dr. Darren Sun Delai for helpful remarks.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Liu C, Hsu PC, Lee HW, Ye M, Zheng G, Liu N, Li WY, Cui Y (2015) Transparent air filter for high-efficiency PM 2.5 capture. Nat Commun 6:6205. doi: 10.1038/ncomms7205 CrossRefGoogle Scholar
  2. 2.
    Sun Y, Wei Z, Zhang W, Li P, Lian K, Hu J (2016) Synthesis of brush-like ZnO nanowires and their enhanced gas-sensing properties. J Mater Sci 51:1428–1436. doi: 10.1007/s10853-015-9462-6 CrossRefGoogle Scholar
  3. 3.
    Theron SA, Yarin AL, Zussman E, Kroll E (2005) Multiple jets in electrospinning: experiment and modeling. Polymer 46:2889–2899CrossRefGoogle Scholar
  4. 4.
    Kim G, Cho YS, Kim WD (2006) Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode. Eur Polym J 42:2031–2038CrossRefGoogle Scholar
  5. 5.
    Kumar A, Wei M, Barry C, Chen J, Mead J (2010) Controlling fiber repulsion in multijet electrospinning for higher throughput. Macromol Mater Eng 295:701–708CrossRefGoogle Scholar
  6. 6.
    Molnar K, Nagy ZK (2016) Corona-electrospinning: needleless method for high-throughput continuous nanofiber production. Eur Polym J 74:279–286CrossRefGoogle Scholar
  7. 7.
    Lukas D, Sarkar A, Pokorny P (2008) Self-organization of jets in electrospinning from free liquid surface: a generalized approach. J Appl Phys 103:084309. doi: 10.1063/1.2907967 CrossRefGoogle Scholar
  8. 8.
    Miloh T, Spivak B, Yarin AL (2009) Needleless electrospinning: electrically driven instability and multiple jetting from the free surface of a spherical liquid layer. J Appl Phys 106:114910. doi: 10.1063/1.3264884 CrossRefGoogle Scholar
  9. 9.
    Reznik SN, Yarin AL, Theron A, Zussman E (2004) Transient and steady shapes of droplets attached to a surface in a strong electric field. J Fluid Mech 516:349–377CrossRefGoogle Scholar
  10. 10.
    Kostakova E, Meszaros L, Gregr J (2009) Composite nanofibers produced by modified needleless electrospinning. Mater Lett 63:2419–2422CrossRefGoogle Scholar
  11. 11.
    Shuakat MN, Lin T (2015) Highly-twisted, continuous nanofiber yarns prepared by a hybrid needle-needleless electrospinning technique. RSC Adv 5:33930–33937CrossRefGoogle Scholar
  12. 12.
    Holopainen J, Penttinen T, Santala E, Ritala M (2014) Needleless electrospinning with twisted wire spinneret. Nanotechnology 26:025301. doi: 10.1088/0957-4484/26/2/025301 CrossRefGoogle Scholar
  13. 13.
    Bhattacharyya I, Molaro MC, Braatz RD, Rutledge GC (2016) Free surface electrospinning of aqueous polymer solutions from a wire electrode. Chem Eng J 289:203–211CrossRefGoogle Scholar
  14. 14.
    Tang S, Zeng Y, Wang X (2010) Splashing needleless electrospinning of nanofibers. Polym Eng Sci 50:2252–2257CrossRefGoogle Scholar
  15. 15.
    Yarin AL, Zussman E (2004) Upward needleless electrospinning of multiple nanofibers. Polymer 45:2977–2980CrossRefGoogle Scholar
  16. 16.
    Thoppey NM, Bochinski JR, Clarke LI, Gorga RE (2010) Unconfined fluid electrospun into high quality nanofibers from a plate edge. Polymer 51:4928–4936CrossRefGoogle Scholar
  17. 17.
    Thoppey NM, Bochinski JR, Clarke LI, Gorga RE (2011) Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology 22:345301. doi: 10.1088/0957-4484/22/34/345301 CrossRefGoogle Scholar
  18. 18.
    Wang X, Niu H, Lin T, Wang X (2009) Needleless electrospinning of nanofibers with a conical wire coil. Polym Eng Sci 49:1582–1586CrossRefGoogle Scholar
  19. 19.
    Kula J, Linka A, Tunak M, Lukas D (2014) Image analysis of jet structure on electrospinning from free liquid surface. Appl Phys Lett 104:243114. doi: 10.1063/1.4884597 CrossRefGoogle Scholar
  20. 20.
    Gurevich AV, Karashtin AN (2013) Runaway breakdown and hydrometeors in lightning initiation. Phys Rev Lett 110:185005. doi: 10.1103/PhysRevLett.110.185005 CrossRefGoogle Scholar
  21. 21.
    Jiang B, Zheng J, Qiu S, Wu M, Zhang Q, Yan Z, Xue Q (2014) Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J 236:348–368CrossRefGoogle Scholar
  22. 22.
    Eifert A, Petit J, Baier T, Bonaccurso E, Hardt S (2015) Inscribing wettability gradients onto polymer substrates with different stiffness using corona discharge in point-to-plane geometry. Appl Surf Sci 330:104–110CrossRefGoogle Scholar
  23. 23.
    Pasko VP (2003) Atmospheric physics: electric jets. Nature 423:927–929CrossRefGoogle Scholar
  24. 24.
    Pekárek S (2015) Effect of TiO2 and reverse air supply on ozone production of negative corona discharge with the needle in the dielectric tube to mesh electrode system. Plasma Chem Plasma Process 35:705–719CrossRefGoogle Scholar
  25. 25.
    Forward KM, Rutledge GC (2012) Free surface electrospinning from a wire electrode. Chem Eng J 183:492–503CrossRefGoogle Scholar
  26. 26.
    Liu Z, Chen R, He J (2016) Active generation of multiple jets for producing nanofibers with high quality and high throughput. Mater Des 94:496–501CrossRefGoogle Scholar
  27. 27.
    Feng JJ (2002) The stretching of an electrified non-Newtonian jet: a model for electrospinning. Phys Fluids 14:3912–3926CrossRefGoogle Scholar
  28. 28.
    Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846CrossRefGoogle Scholar
  29. 29.
    Yarin AL, Koombhongse S, Reneker DH (2001) Bending instability in electrospinning of nanofibers. J Appl Phys 89:3018–3026CrossRefGoogle Scholar
  30. 30.
    Niu H, Lin T, Wang X (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114:3524–3530CrossRefGoogle Scholar
  31. 31.
    Dosunmu OO, Chase GG, Kataphinan W, Reneker DH (2006) Electrospinning of polymer nanofibers from multiple jets on a porous tubular surface. Nanotechnology 17:1123. doi: 10.1088/0957-4484/17/4/046 CrossRefGoogle Scholar
  32. 32.
    Lu B, Wang Y, Liu Y, Duan H, Zhou J, Zhang Z, Zhou J, Xie E (2010) Superhigh-throughput needleless electrospinning using a rotary cone as spinneret. Small 6:1612–1616CrossRefGoogle Scholar
  33. 33.
    Tijing LD, Choi JS, Lee S, Kim SH, Shon HK (2014) Recent progress of membrane distillation using electrospun nanofibrous membrane. J Membr Sci 453:435–462CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Engineering Laboratory for Modern Silk, College of Textile and Clothing EngineeringSoochow UniversitySuzhouChina
  2. 2.Nantong Textile InstituteSoochow UniversityNantongChina
  3. 3.School of Civil and Environmental EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations