Journal of Materials Science

, Volume 52, Issue 3, pp 1561–1572 | Cite as

Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection

  • Yongjiao Sun
  • Lin Chen
  • Ying Wang
  • Zhenting Zhao
  • Pengwei Li
  • Wendong Zhang
  • Yamin Leprince-Wang
  • Jie HuEmail author
Original Paper


In this paper, different contents of molybdenum oxide/tungsten oxide (MoO3/WO3) composite nanostructures were synthesized by hydrothermal method. Field emission scanning electron microscopy images revealed that the morphologies of WO3 nanostructures were significantly influenced by the Mo amount. Furthermore, the introduction strategy of MoO3 into WO3 could effectively improve the gas sensing properties. Especially, the sensor based on the 4 mol% MoO3/WO3 composite nanostructures exhibited enhanced gas sensing performance, giving a low limit of detection (500 ppb). It shows high responses of 28.5 and 18.2–100 ppm ethanol and acetone at the operating temperature of 320 °C, which were about 2.3 and 1.7 times higher than those of the pure WO3, respectively. The enhanced sensing properties of MoO3/WO3 gas sensor can be attributed to the addition of MoO3, which has been discussed in relation to the gas sensing mechanism.


MoO3 Composite Nanostructures WCl6 Optimum Operating Temperature Tungsten Hexachloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We appreciate the support of the National Natural Science Foundation of China (51205274), Shanxi Province Science Foundation (2016011039), Shanxi Province Special Talent Fund (201605D211020), University of Science and Technology innovation Research Project of Shanxi Province (2016137), Graduate Education Innovation Fund (02100738), Science and Technology Major Project of the Shan Xi Science and Technology Department (20121101004), and Key Disciplines Construction in Colleges and Universities of Shanxi [(2012)45].

Supplementary material

10853_2016_450_MOESM1_ESM.docx (248 kb)
Supplementary material 1 (DOCX 247 kb)


  1. 1.
    Kim YS, Ha SC, Yang H, Kim YT (2007) Gas sensor measurement system capable of sampling volatile organic compounds (VOCs) in wide concentration range. Sens Actuator B 122:211–218CrossRefGoogle Scholar
  2. 2.
    Dar GN, Umar A, Zaidi SA, Ibrahim AA, Abaker M, Baskoutas S (2012) Ce-doped ZnO nanorods for the detection of hazardous chemical. Sens Actuators B 173:72–78CrossRefGoogle Scholar
  3. 3.
    Rakshit T, Santra S, Manna I, Ray SK (2014) Enhanced sensitivity and selectivity of brush-like SnO2 nanowire/ZnO nanorod heterostructure based sensors for volatile organic compounds. RSC Adv 4:36749–36756CrossRefGoogle Scholar
  4. 4.
    Rai P, Majhi SM, Yu Y-T, Lee J-H (2015) Synthesis of plasmonic Ag@SnO2 core–shell nanoreactors for xylene detection. RSC Adv 5:17653–17659CrossRefGoogle Scholar
  5. 5.
    Jia QQ, Ji HM, Zhang Y, Chen YL, Sun XH, Jin ZF (2014) Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J Hazard Mater 276:262–270CrossRefGoogle Scholar
  6. 6.
    Shin J, Choi SJ, Youn DY, Kim D (2012) Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. J Electroceram 29:106–116CrossRefGoogle Scholar
  7. 7.
    Zeng Y, Zhang T, Wang LJ, Kang MH, Fan HT, Wang R, He Y (2009) Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures. Sens Actuators B 140:73–78CrossRefGoogle Scholar
  8. 8.
    Rani RA, Zoolfakar AS, Ou JZ, Field MR, Austin M, Kalantar-zhadeh K (2013) Nanoporous Nb2O5 hydrogen gas sensor. Sens Actuators B 176:149–156CrossRefGoogle Scholar
  9. 9.
    Mao YZ, Ma S, Li XB, Wang CY, Li FM (2014) Effect of Mn doping on the microstructures and sensing properties of ZnO nanofibers. Appl Surf Sci 298:109–115CrossRefGoogle Scholar
  10. 10.
    Dong CJ, Xing XX, Chen N, Liu X, Wang YD (2016) Biomorphic synthesis of hollow CuO fibers for low-ppm-level n-propanol detection via a facile solution combustion method. Sens Actuators B 230:1–8CrossRefGoogle Scholar
  11. 11.
    Sun P, Wang C, Liu JY, Zhou X, Li XW, Hu XL, Lu GY (2015) Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. ACS Appl Mater Interfaces 7:19119–19125CrossRefGoogle Scholar
  12. 12.
    Vuong NM, Hieu NM, Kim D, Choi B, Kim M (2014) Ni2O3 decoration of In2O3 nanostructures for catalytically enhanced methane sensing. Appl Surf Sci 317:765–770CrossRefGoogle Scholar
  13. 13.
    Wang ZY, Sun P, Yang TL, Gao Y, Li XW, Lu GY, Du Y (2013) Flower-like WO3 architectures synthesized via a microwave-assisted method and their gas sensing properties. Sens Actuator B 186:734–740CrossRefGoogle Scholar
  14. 14.
    Wang C, Sun R, Li X, Sun YF, Sun P, Liu FM, Lu GY (2014) Hierarchical flower-like WO3 nanostructures and their gas sensing properties. Sens Actuator B 204:224–230CrossRefGoogle Scholar
  15. 15.
    Zeng J, Hu M, Wang WD, Chen HQ, Qin YX (2012) NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens Actuator B 161:447–452CrossRefGoogle Scholar
  16. 16.
    Zhang YD, He WW, Zhao HX, Li PJ (2013) Template-free to fabricate highly sensitive and selective acetone gas sensor based on WO3 microspheres. Vacuum 95:30–34CrossRefGoogle Scholar
  17. 17.
    Xu LJ, Yin ML, Liu SZ (2015) Superior sensor performance from Ag@WO3 core–shell nanostructure. J Alloys Compd 623:127–131CrossRefGoogle Scholar
  18. 18.
    Kida T, Nishiyama A, Hua ZQ, Suematsu K, Yuasa M (2014) WO3 nanolamella gas sensor: porosity control using SnO2 nanoparticles for enhanced NO2 sensing. Langmuir 30:2571–2579CrossRefGoogle Scholar
  19. 19.
    Chi X, Liu CB, Li Y, Wang ZJ, Bo XQ, Liu LL, Su C (2014) Tungsten trioxide nanotubes with high sensitive and selective properties to acetone. Sens Actuator B 194:33–37CrossRefGoogle Scholar
  20. 20.
    Yang XJ, Salles V, Kaneti Y, Liu MS, Maillard M, Journet C, Jiang XC, Brioude A (2015) Fabrication of highly sensitive gas sensor based on Au functionalized WO3 composite nanofibers by electrospinning. Sens Actuator B 220:1112–1119CrossRefGoogle Scholar
  21. 21.
    Zhao XD, Ji HM, Jia QQ, Wang MJ (2015) A nanoscale Co3O4–WO3 p–n junction sensor with enhanced acetone responsivity. J Mater Sci 26:8217–8223. doi: 10.1007/s10854-015-3484-3 Google Scholar
  22. 22.
    Wang CY, Ma SY, Sun A, Qin R, Yang FC, Li XB (2014) Characterization of electrospun Pr-doped ZnO nanostructure for acetic acid sensor. Sens Actuator B 193:326–333CrossRefGoogle Scholar
  23. 23.
    Sun P, Zhou X, Wang C, Wang B, Xu XM, Lu GY (2014) One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures. Sens Actuators B 190:32–39CrossRefGoogle Scholar
  24. 24.
    Lu YY, Zhan WW, He Y, Wang YT, Kong XJ, Kuang Q, Xie ZX, Zheng LS (2014) MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl Mater Interface 6:4186–4195CrossRefGoogle Scholar
  25. 25.
    Zhou D, Shi F, Xie D, Wang DH, Xia XH, Wang XL, Gu CD, Tu JP (2016) Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J Colloid Interface Sci 465:112–120CrossRefGoogle Scholar
  26. 26.
    Zhou D, Xie D, Shi F, Wang DH, Ge X, Xia XH, Wang XL, Gu CD, Tu JP (2015) Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation. J Colloid Interface Sci 460:200–208CrossRefGoogle Scholar
  27. 27.
    Cai GF, Tu JP, Zhou D, Wang XL, Gu CD (2014) Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol Energy Mater Sol Cells 124:103–110CrossRefGoogle Scholar
  28. 28.
    Swiatowska-Mrowiecka J, de Diesbach S, Maurice V, Zanna S, Klein L, Briand E, Vickridge I, Marcus P (2008) Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA. J Phys Chem C 112:11050–11058CrossRefGoogle Scholar
  29. 29.
    Kaneti YV, Zakaria QMD, Zhang Z, Chen C, Yue J, Liu M, Jiang XC, Yu A (2014) Solvothermal synthesis of ZnO-decorated α-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J Mater Chem A 2:13283–13292CrossRefGoogle Scholar
  30. 30.
    Ahn MW, Park KS, Heo JH, Kim DW, Choi KJ, Park JG (2009) On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens Actuator B 138:168–173CrossRefGoogle Scholar
  31. 31.
    Huang JR, Xu XJ, Gu CP, Yang M, Yang M, Liu JH (2011) Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties. J Mater Chem 21:12283–13289Google Scholar
  32. 32.
    Sun P, Wang WN, Liu YP, Sun YF, Ma J, Lu GY (2012) Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens Actuator B 173:52–57CrossRefGoogle Scholar
  33. 33.
    Alenezi MR, Henley SJ, Emerson NG, Silva RP (2014) From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6:235–247CrossRefGoogle Scholar
  34. 34.
    Jia QQ, Ji HM, Gao P, Bai X, Jin ZG (2015) Control of the acetone sensitive and selective properties of WO3 nanofibers by doping Co ions: effect of crystal symmetric structure on the responsivity of gas–solid boundaries for gas sensor. J Mater Sci 26:5792–5802. doi: 10.1007/s10854-015-3138-5 Google Scholar
  35. 35.
    Gao P, Ji HM, Zhou YG, Li XL (2012) Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol–gel method. Thin Solid Film 520:3100–3106CrossRefGoogle Scholar
  36. 36.
    Xiao JK, Song CW, Dong W, Li C, Yin YY, Zhang XN, Song MY (2015) Synthesis, characterization, and gas sensing applications of WO3 nanobricks. J Mater Eng Perform 24:3026–3031CrossRefGoogle Scholar
  37. 37.
    Yao Y, Ji FX, Yin ML, Ren XP, Ma Q, Yan JQ (2016) Ag nanoparticle-sensitized WO3 hollow nanosphere for localized surface plasmon enhanced gas sensors. ACS Appl Mater Interface 8:18165–18172CrossRefGoogle Scholar
  38. 38.
    Li XX, Zhang GY, Cheng FY, Guo B, Chen J (2006) Synthesis, characterization, and gas-sensor application of WO3 nanocuboids. J Electrochem Soc 153:H133–H137CrossRefGoogle Scholar
  39. 39.
    Labidi A, Gillet E, Delamare R, Maaref M, Aguir K (2006) Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sens Actuator B 120:338–345CrossRefGoogle Scholar
  40. 40.
    Ahsan M, Ahmad MZ, Tesfamichael T, Bell J, Wlodarski W, Motta N (2012) Low temperature response of nanostructured tungsten oxide thin films toward hydrogen and ethanol. Sens Actuator B 173:789–796CrossRefGoogle Scholar
  41. 41.
    Chen YJ, Zhu CL, Shi XL, Cao MS, Jin HB (2008) The synthesis and selective gas sensing characteristics of SnO2/α-Fe2O3 hierarchical nanostructures. Nanotechnology 19:205603CrossRefGoogle Scholar
  42. 42.
    Zhu CL, Chen YJ, Wang RX, Wang LJ, Cao MS, Shi XL (2009) Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens Actuator B 140:185–189CrossRefGoogle Scholar
  43. 43.
    Sun P, Cai YX, Du SS, Xu XM, You L, Ma J, Liu FM, Liang XS, Sun YF, Lu GY (2013) Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens Actuator B 182:336–343CrossRefGoogle Scholar
  44. 44.
    Majhi Bertouluzzi L, Tietwyk KJ, Ginsburg A, Keller DA, Yaro PL, Anderson AY, Bisquert J, Zaban A (2016) Combinatorial investigation and modelling of MoO3 hole-selective contact in TiO2/Co3O/MoO3 all-oxide solar cells. Adv Mater Interface 3:1–7CrossRefGoogle Scholar
  45. 45.
    Lundstrom KI, Shivaraman MS, Syensson CM (1975) A hydrogen-sensitive Pd-gate MOS transistor. J Appl Phys 46:3876–3881CrossRefGoogle Scholar
  46. 46.
    Yu J, Wlodarski W, Li YX, Kalantar-zadeh K (2010) Nanorod based Schottky contact gas sensors in reversed bias condition. Nanotechnology 21:265502CrossRefGoogle Scholar
  47. 47.
    Liu CB, Shan H, Liu L, Li SC, Li HY (2014) High sensing properties of Ce-doped α-Fe2O3 nanotubes to acetone. Ceram Int 40:2395–2399CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yongjiao Sun
    • 1
  • Lin Chen
    • 2
  • Ying Wang
    • 1
  • Zhenting Zhao
    • 1
  • Pengwei Li
    • 1
  • Wendong Zhang
    • 1
  • Yamin Leprince-Wang
    • 3
  • Jie Hu
    • 1
    Email author
  1. 1.Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of EducationTaiyuanChina
  3. 3.Université Paris-Est, ESYCOM, UPEMMarne-la-ValléeFrance

Personalised recommendations