Journal of Materials Science

, Volume 52, Issue 2, pp 793–803 | Cite as

Electrical properties of NiFe2O4 epitaxial ultra-thin films

  • G. A. Boni
  • L. Hrib
  • S. B. Porter
  • G. Atcheson
  • I. Pintilie
  • K. Rode
  • L. Pintilie
Original Paper


Epitaxial thin films of NiFe2O4 are fabricated by pulsed laser deposition on SrTiO3 substrate. Symmetrical capacitor-like structures are formed using SrRuO3 as bottom and top electrodes. Electrical characterizations, including current–voltage, capacitance–voltage and capacitance–frequency measurement, reveal a hysteresis-like behaviour for current and capacitance as function of voltage. This could be assigned to a resistive and/or capacitive switching. A “degradation” process takes place after repeated voltage cycling or after heating the sample to 400 K, leading to the stabilization of different resistive states. These features can be related to the changes observed in the capacitance–frequency characteristics, suggesting the presence of a relaxation mechanism at low frequencies, and can be associated with the presence of a deep donor-type level in the band-gap of the NiFe2O4 layer.



The authors acknowledge the financial support from the following projects: Idea-Complex Research Grant PN-II-ID-PCCE-2011-2-0006 (Contract No. 3/2012, Romanian Ministry of Education-Executive Unit for Funding High Education, Research, Development and Innovation, MEN-UEFISCDI); FP7 Project IFOX; Core Program of NIMP (PN16-480102). The authors acknowledge also the assistance of Dr. Iuliana Pasuk for XRD characterization.


  1. 1.
    Hu J-M, Chen L-Q, Nan C-W (2016) Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv Mater 28:15–39CrossRefGoogle Scholar
  2. 2.
    Huang W, Yang S, Li X (2015) Multiferroic heterostructures and tunneling junctions. J Materiomics 1:263–284CrossRefGoogle Scholar
  3. 3.
    Mukherjee D, Hordagoda M (2014) Enhanced magnetism and ferroelectricity in epitaxial Pb(Zr0.52Ti0.48)O3/CoFe2O4/La0.7Sr0.3MnO3 multiferroic heterostructures grown using dual-laser ablation technique. J Appl Phys 115:17D707(1)–17D707(3)Google Scholar
  4. 4.
    Liu M, Obi O, Cai Z, Lou J, Yang G, Ziemer KS, Sun NX (2010) Electrical tuning of magnetism in Fe3O4/PZN–PT multiferroic heterostructures derived by reactive magnetron sputtering. J Appl Phys 107:073916(1)–073916(6)Google Scholar
  5. 5.
    Liu M, Obi O, Lou J, Stoute S, Cai Z, Ziemer K, Sun NX (2009) Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition. J Phys Appl Phys 42:045007(1)–045007(5)Google Scholar
  6. 6.
    Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer KS, Harris VG, Sun NX (2009) Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater 19:1826–1831CrossRefGoogle Scholar
  7. 7.
    Chang K-S, Aronova M, Lin C-L, Murakami M, Yu M-H, Hattrick-Simpers J, Famodu O, Lee S, Ramesh R, Wuttig M, Takeuchi I, Gao C, Bendersky L (2004) Exploration of artificial multiferroic thin-film heterostructures using composition spreads. Appl Phys Lett 84:3091–3093CrossRefGoogle Scholar
  8. 8.
    Srinivasan G (2010) Magnetoelectric composites. Annu Rev Mater Res 40:153–178CrossRefGoogle Scholar
  9. 9.
    Sun NX, Srinivasan G (2012) Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 02:1240004(1)–1240004(46)CrossRefGoogle Scholar
  10. 10.
    Ortega N, Kumar A, Bhattacharya P, Majumder SB, Katiyar RS (2008) Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4 thin films. Phys Rev B 77:014111(1)–014111(10)CrossRefGoogle Scholar
  11. 11.
    Dawber M, Rabe KM, Scott JF (2005) Physics of thin-film ferroelectric oxides. Rev Mod Phys 77:1083–1130CrossRefGoogle Scholar
  12. 12.
    Ramesh R (ed) (2013) Thin film ferroelectric materials and devices. Springer, New YorkGoogle Scholar
  13. 13.
    Greenwald S, Pickart SJ, Grannis FH (1954) Cation distribution and g factors of certain spinels containing Ni2+, Mn2+, Co2+, Al3+, Ga3+, and Fe3+. J Chem Phys 22:1597–1600CrossRefGoogle Scholar
  14. 14.
    Sze SM (1998) Physics of semiconductor devices, 2nd edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Mönch W (1994) Metal-semiconductor contacts: electronic properties. Surf Sci 299–300:928–944CrossRefGoogle Scholar
  16. 16.
    Anjum S, Salman A, Rafique MS, Zia R, Riaz S, Iqbal H (2015) Investigation of magnetic anisotropy in cobalt chromium (CoCr0.5Fe1.5O4) spinel ferrite thin films. J Supercond Nov Magn 28:3147–3156CrossRefGoogle Scholar
  17. 17.
    Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36CrossRefGoogle Scholar
  18. 18.
    Hu W, Zou L, Chen R, Xie W, Chen X, Qin N, Li S, Yang G, Bao D (2014) Resistive switching properties and physical mechanism of cobalt ferrite thin films. Appl Phys Lett 104:143502(1)–143502(5)Google Scholar
  19. 19.
    Wang Q, Zhu Y, Liu X, Zhao M, Wei M, Zhang F, Zhang Y, Sun B, Li M (2015) Study of resistive switching and magnetism modulation in the Pt/CoFe2O4/Nb:SrTiO3 heterostructures. Appl Phys Lett 107:063502(1)–063502(4)Google Scholar
  20. 20.
    Hu W, Qin N, Wu G, Lin Y, Li S, Bao D (2012) Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J Am Chem Soc 134:14658–14661CrossRefGoogle Scholar
  21. 21.
    Kalon G, Shin YJ, Truong VG, Kalitsov A, Yang H (2011) The role of charge traps in inducing hysteresis: capacitance–voltage measurements on top gated bilayer graphene. Appl Phys Lett 99:083109(1)–083109(3)CrossRefGoogle Scholar
  22. 22.
    Wang JC, Chiao SH, Lee CL, Lei TF, Lin YM, Wang MF, Chen SC, Yu CH, Liang MS (2002) A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film. J Appl Phys 92:3936–3940CrossRefGoogle Scholar
  23. 23.
    Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press Limited, LondonGoogle Scholar
  24. 24.
    Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502(1)–076502(31)CrossRefGoogle Scholar
  25. 25.
    Shuai Y, Zhou S, Bürger D, Helm M, Schmidt H (2011) Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt. J Appl Phys 109:124117(1)–124117(4)Google Scholar
  26. 26.
    Lee MH, Kim KM, Kim GH, Seok JY, Song SJ, Yoon JH, Hwang CS (2010) Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy. Appl Phys Lett 96:152909(1)–152909(3)Google Scholar
  27. 27.
    Chen C, Pan F, Wang ZS, Yang J, Zeng F (2012) Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J Appl Phys 111:013702(1)–013702(6)Google Scholar
  28. 28.
    Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840CrossRefGoogle Scholar
  29. 29.
    Gao B, Sun B, Zhang H, Liu L, Liu X, Han R, Kang J, Yu B (2009) Unified Physical Model of bipolar oxide-based resistive switching memory. IEEE Electron Device Lett 30:1326–1328CrossRefGoogle Scholar
  30. 30.
    Kim KM, Choi BJ, Lee MH, Kim GH, Song SJ, Seok JY, Yoon JH, Han S, Hwang CS (2011) A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 22:254010(1)–254010(8)Google Scholar
  31. 31.
    Zhou P, Yin M, Wan HJ, Lu HB, Tang TA, Lin YY (2009) Role of TaON interface for CuxO resistive switching memory based on a combined model. Appl Phys Lett 94:053510(1)–053510(3)Google Scholar
  32. 32.
    Zafar S, Jones RE, Jiang B, White B, Chu P, Taylor D, Gillespie S (1998) Oxygen vacancy mobility determined from current measurements in thin Ba0.5Sr0.5TiO3 films. Appl Phys Lett 73:175–177CrossRefGoogle Scholar
  33. 33.
    Pantelides ST (1978) The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys 50:797–858CrossRefGoogle Scholar
  34. 34.
    Johnson MT, Kotula PG, Carter CB (1999) Growth of nickel ferrite thin films using pulsed-laser deposition. J Cryst Growth 206:299–307CrossRefGoogle Scholar
  35. 35.
    Summerfelt SR, Carter CB (1992) Interaction between dislocations and NiFe2O4 precipitates in a NiO matrix. Acta Metall Mater 40:2805–2812CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National Institute of Materials PhysicsMagureleRomania
  2. 2.School of PhysicsTrinity CollegeDublin 2Ireland

Personalised recommendations