Journal of Materials Science

, Volume 52, Issue 1, pp 391–407 | Cite as

Tuning the configuration of Au nanostructures: from vermiform-like, rod-like, triangular, hexagonal, to polyhedral nanostructures on c-plane GaN

  • Mao Sui
  • Puran Pandey
  • Ming-Yu Li
  • Quanzhen Zhang
  • Sundar Kunwar
  • Jihoon Lee
Original Paper

Abstract

The systematic control over the configuration, size, and density of Au nanostructures can directly improve or optimize the physical, chemical, and optoelectronic properties and thus the functionality in the related applications. In this work, we successfully demonstrate the systematic configurational transition of self-assembled Au nanostructures on c-plane GaN via the precise control of annealing temperature, deposition amount, and annealing duration. Depending on the control of annealing temperature, self-assembled Au vermiform-like nanostructures are fabricated and evolve into the faceted Au nanorods and Au hexagons with the minimization of overall surface energy based on the Volmer–Weber growth model. With the deposition amount control, the volume-dependent transition of Au nanostructure configurations from triangles to hexagons and then to polyhedral is clearly observed and discussed based on the combinational effects of growth kinetics and surface free energy distribution. The configurational transition from irregular Au clusters to faceted nanostructures is witnessed along with the incremental variation of annealing duration based on the Ostwald ripening.

Notes

Acknowledgements

This project was supported by the National Research Foundation of South Korea (No. 2011-0030821 and 2016R1A1A1A05005009) and in part by the research Grant of Kwangwoon University in 2016.

Supplementary material

10853_2016_339_MOESM1_ESM.pdf (3.6 mb)
Supplementary material 1 (PDF 3692 kb)

References

  1. 1.
    Chu R, Corrion A, Chen M et al (2011) 1200-V normally off GaN-on-Si field-effect transistors with low dynamic on-resistance. IEEE Electron Dev Lett 32:632–634CrossRefGoogle Scholar
  2. 2.
    Pengelly RS, Wood SM, Milligan JW et al (2012) A review of GaN on SiC high–electron–mobility power transistors and MMICs. IEEE Trans Microw Theory Tech 60:1764–1783CrossRefGoogle Scholar
  3. 3.
    Palacios T, Chakraborty A, Heikman S et al (2006) AlGaN/GaN high electron mobility transistors with InGaN back-barriers. IEEE Electron Device Lett 27:13–15CrossRefGoogle Scholar
  4. 4.
    Ando Y, Okamoto Y, Miyamoto H et al (2003) 10-W/mm AlGaN-GaN HFET with a field modulating plate. IEEE Electron Device Lett 24:289–291CrossRefGoogle Scholar
  5. 5.
    Kim SJ, Kim HD, Kim KH et al (2014) Fabrication of wide-bandgap transparent electrodes by using conductive filaments: performance breakthrough in vertical-type GaN LED. Sci Rep 4:5827Google Scholar
  6. 6.
    Chakraborty A, Haskell BA, Keller S et al (2005) Demonstration of nonpolar m-plane InGaN/GaN light-emitting diodes on free-standing m-plane GaN substrates. Jpn J Appl Phys 44:L173–L175CrossRefGoogle Scholar
  7. 7.
    Cho CY, Lee SJ, Song JH et al (2011) Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Appl Phys Lett 98:051106CrossRefGoogle Scholar
  8. 8.
    Jin Y, Li Q, Li G et al (2014) Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles. Nanoscale Res Lett 9:1CrossRefGoogle Scholar
  9. 9.
    Freeman RG, Grabar KC, Allison KJ, Bright RM (1995) Self-assembled metal colloid monolayers: an approach to SERS substrates. Science 267:1629–1632CrossRefGoogle Scholar
  10. 10.
    Cittadini M, Bersani M, Perrozzi F et al (2014) Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon 69:452–459CrossRefGoogle Scholar
  11. 11.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857CrossRefGoogle Scholar
  12. 12.
    Wang C, Astruc D (2014) Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem Soc Rev 43:7188–7216CrossRefGoogle Scholar
  13. 13.
    Sui M, Li MY, Kim ES, Lee JH (2014) Annealing temperature effect on the fabrication of self-assembled gold droplets on various type-B GaAs surfaces. CrystEngComm 16:4390–4654CrossRefGoogle Scholar
  14. 14.
    Li MY, Sui M, Kim ES et al (2014) Droplets to merged nanostructures: evolution of gold nanostructures by the variation of deposition amount on Si(111). Cryst Growth Des 14:1128–1134CrossRefGoogle Scholar
  15. 15.
    Seguini G, Curi JL, Spiga S et al (2014) Solid-state dewetting of ultra-thin Au films on SiO2 and HfO2. Nanotechnology 25:495603CrossRefGoogle Scholar
  16. 16.
    Serrano A, de la Fuente OR, García MA (2010) Extended and localized surface plasmons in annealed Au films on glass substrates. J Appl Phys 108:074303CrossRefGoogle Scholar
  17. 17.
    Pandey P, Sui M, Li MY et al (2015) Systematic study on the self-assembled hexagonal au voids, nano-clusters and nanoparticles on GaN (0001). PLoS One 10:e0134637CrossRefGoogle Scholar
  18. 18.
    Rath A, Dash JK, Juluri RR et al (2012) Growth of oriented Au nanostructures: role of oxide at the interface. J Appl Phys 111:064322CrossRefGoogle Scholar
  19. 19.
    Rath A, Dash JK, Juluri RR et al (2014) A study of the initial stages of the growth of Au-assisted epitaxial Ge nanowires on a clean Ge (100) surface. CrystEngComm 16:2486–2490CrossRefGoogle Scholar
  20. 20.
    Rath A, Juluri RR, Satyam PV (2014) Real time nanoscale structural evaluation of gold structures on Si (100) surface using in situ transmission electron microscopy. J Appl Phys 115:184303CrossRefGoogle Scholar
  21. 21.
    Rath A, Dash JK, Juluri RR et al (2011) Temperature-dependent electron microscopy study of Au thin films on Si (1 0 0) with and without a native oxide layer as barrier at the interface. J Phys D Appl Phys 44:115301CrossRefGoogle Scholar
  22. 22.
    Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399–434CrossRefGoogle Scholar
  23. 23.
    Kwon JY, Yoon TS, Kim KB, Min SH (2003) Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide. J Appl Phys 93:3270–3278CrossRefGoogle Scholar
  24. 24.
    Sugawara K, Minamide Y, Kawamura M (2008) Agglomeration behavior of Ag films suppressed by alloying with some elements. Vacuum 83:610–613CrossRefGoogle Scholar
  25. 25.
    Chen Z, Lu D, Yuan H (2002) New method to fabricate InGaN quantum dots by metalorganic chemical vapor deposition. J Cryst Growth 235:188–194CrossRefGoogle Scholar
  26. 26.
    Chen Z, Fareed RQ, Gaevski M (2006) Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl Phys Lett 89:081905CrossRefGoogle Scholar
  27. 27.
    Rijnders GUUS, Blank DH (2007) Pulsed laser deposition of thin films In: Eason R (ed) Ch 8. Wiley-Interscience, USA, pp 179–180Google Scholar
  28. 28.
    Volmer M, Weber AZ (1926) Nucleus formation in supersaturated systems. Z Phys Chem 119:277–301Google Scholar
  29. 29.
    Witten TA Jr., Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47:1400–1403CrossRefGoogle Scholar
  30. 30.
    Compton OC, Osterloh FE (2007) Evolution of size and shape in the colloidal crystallization of gold nanoparticles. J Am Chem Soc 129:7793–7798CrossRefGoogle Scholar
  31. 31.
    Zannier V, Grillo V, Martelli F (2014) Tuning the growth mode of nanowires via the interaction among seeds, substrates and beam fluxes. Nanoscale 6:8392–8399CrossRefGoogle Scholar
  32. 32.
    Hou WC, Chen LY, Tang WC, Hong FC (2011) Control of seed detachment in Au-assisted GaN nanowire growths. Cryst Growth Des 11:990–994CrossRefGoogle Scholar
  33. 33.
    Meng G, Yanagida T, Kanai M (2013) Pressure-induced evaporation dynamics of gold nanoparticles on oxide substrate. Phys Rev E 87:012405CrossRefGoogle Scholar
  34. 34.
    Choi WK, Liew TH, Chew HG (2008) A combined top-down and bottom-up approach for precise placement of metal nanoparticles on silicon. small 4:330–333CrossRefGoogle Scholar
  35. 35.
    Pandey P, Sui M, Li MY et al (2016) Nanoparticles to nanoholes: fabrication of porous GaN with precisely controlled dimension via the enhanced GaN decomposition by Au nanoparticles. Cryst Growth Des 16:3334–3344CrossRefGoogle Scholar
  36. 36.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRefGoogle Scholar
  37. 37.
    Zhang JM, Ma F, Xu KW (2004) Calculation of the surface energy of FCC metals with modified embedded-atom method. Appl Surf Sci 229:34–42CrossRefGoogle Scholar
  38. 38.
    Narayanan R, El-Sayed MA (2005) Catalysis with Transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676CrossRefGoogle Scholar
  39. 39.
    Tao AR, Habas S, Yang P (2008) Shape Control of Colloidal Metal Nanocrystals. small 4:310–325Google Scholar
  40. 40.
    Lofton C, Sigmund W (2005) Mechanisms controlling crystal habits of gold and silver colloids. Adv Funct Mater 15:1197–1208CrossRefGoogle Scholar
  41. 41.
    Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791CrossRefGoogle Scholar
  42. 42.
    Li CR, Lu NP, Mei J et al (2011) Polyhedral to nearly spherical morphology transformation of silver microcrystals grown from vapor phase. J Cryst Growth 314:324–330CrossRefGoogle Scholar
  43. 43.
    Pandey P, Sui M, Li MY et al (2015) Shape transformation of self-assembled Au nanoparticles by the systematic control of deposition amount on sapphire (0001). RSC Adv 5:66212–66220CrossRefGoogle Scholar
  44. 44.
    Lee J, Pandey P, Sui M et al (2015) Observation of shape, configuration, and density of Au nanoparticles on various GaAs surfaces via deposition amount, annealing temperature, and dwelling time. Nanoscale Res Lett 10:240CrossRefGoogle Scholar
  45. 45.
    Zinke-Allmang M, Feldman LC, Grabow MH (1992) Clustering on surfaces. Surf Sci Rep 16:377–463CrossRefGoogle Scholar
  46. 46.
    Ruffinoa F, Grimaldi MG (2010) Atomic force microscopy study of the growth mechanisms of nanostructured sputtered Au film on Si(111): evolution with film thickness and annealing time. J Appl Phys 107:104321CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Electronics and InformationKwangwoon UniversityNowon-guSouth Korea
  2. 2.Institute of Nanoscale Science and EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations