Journal of Materials Science

, Volume 52, Issue 1, pp 138–144 | Cite as

Aspect ratio effects on the serration dynamics of a Zr-based bulk metallic glass

Original Paper

Abstract

Based on the constant strain rate compressive experiments to a Zr-based bulk metallic glass, the aspect ratio effects on the statistical properties of serration is systematically investigated. In the plastic deformation state, as the aspect ratio decreases, the stress drop magnitude increases dramatically and the reloading time in one serration event increases significantly. Moreover, distribution of the elastic energy density of each serration event is predicted, which obeys the squared exponential decay law. The size effect law is adopted to describe the serration dynamic-related parametric variation with different aspect ratios. It is noted that the scaling exponent reduces with the increase of the aspect ratio. In general, the effect of aspect ratio on the serration flow could be explained by the shear-band stability index.

References

  1. 1.
    Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater 55:4067–4109CrossRefGoogle Scholar
  2. 2.
    Hufnagel TC, Schuh CA, Falk ML (2016) Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Mater 109:375–393CrossRefGoogle Scholar
  3. 3.
    Sun BA, Wang WH (2015) The fracture of bulk metallic glasses. Prog Mater Sci 74:211–307CrossRefGoogle Scholar
  4. 4.
    Qiao JW, Jia HL, Liaw PK (2016) Metallic glass matrix composites. Mater Sci Eng R 100:1–69CrossRefGoogle Scholar
  5. 5.
    Qiao JC, Pelletier JM (2014) Dynamic mechanical relaxation in bulk metallic glasses: a review. J Mater Sci Technol 30:523–545CrossRefGoogle Scholar
  6. 6.
    Sun BA, Yu HB, Jiao W, Bai HY, Zhao DQ, Wang WH (2010) Plasticity of ductile metallic glasses: a self-organized critical state. Phys Rev Lett 105:035501CrossRefGoogle Scholar
  7. 7.
    Ke HB, Sun BA, Liu CT, Yang Y (2014) Effect of size and base-element on the jerky flow dynamics in metallic glass. Acta Mater 63:180–190CrossRefGoogle Scholar
  8. 8.
    Sun BA, Pauly S, Hu J, Wang WH, Kühn U, Eckert J (2013) Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses. Phys Rev Lett 110:225501CrossRefGoogle Scholar
  9. 9.
    Antonaglia J, Wright WJ, Gu XJ, Byer RR, Hufnagel TC, LeBlanc M, Uhl JT, Dahmen KA (2014) Bulk metallic glasses deform via slip avalanches. Phys Rev Lett 112:155501CrossRefGoogle Scholar
  10. 10.
    Klaumünzer D, Lazarev A, Maaß R, Dalla Torre FH, Vinogradov A, Löffler JF (2011) Probing shear-band initiation in metallic glasses. Phys Rev Lett 107:185502CrossRefGoogle Scholar
  11. 11.
    Sun BA, Pauly S, Tan J, Stoica M, Wang WH, Kühn U, Eckert J (2012) Serrated flow and stick–slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater 60:4160–4171CrossRefGoogle Scholar
  12. 12.
    Sun BA, Yang Y, Wang WH, Liu CT (2016) The critical criterion on runaway shear banding in metallic glasses. Sci Rep 6:21388CrossRefGoogle Scholar
  13. 13.
    Dalla Torre FH, Klaumünzer D, Maaß R, Löffler JF (2010) Stick–slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses. Acta Mater 58:3742–3750CrossRefGoogle Scholar
  14. 14.
    Thurnheer P, Maaß R, Laws KJ, Pogatscher S, Löffler JF (2015) Dynamic properties of major shear bands in Zr–Cu–Al bulk metallic glasses. Acta Mater 96:428–436CrossRefGoogle Scholar
  15. 15.
    Qian LH, Guo PC, Meng JY, Zhang FC (2013) Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels. J Mater Sci 48:1669–1674. doi:10.1007/s10853-012-6925-x CrossRefGoogle Scholar
  16. 16.
    Jiang WH, Atzmon M (2003) Rate dependence of serrated flow in a metallic glass. J Mater Res 18:755–757CrossRefGoogle Scholar
  17. 17.
    Lemaître A, Caroli C (2009) Rate-dependent avalanche size in athermally sheared amorphous solids. Phys Rev Lett 103:065501CrossRefGoogle Scholar
  18. 18.
    Ren JL, Chen C, Wang G, Mattern N, Eckert J (2011) Dynamics of serrated flow in a bulk metallic glass. AIP Adv 1:032158CrossRefGoogle Scholar
  19. 19.
    Wang Z, Qiao JW, Yang HJ, Liaw PK, Huang CJ, Li LF (2015) Serration dynamics in a Zr-based bulk metallic metallic glass. Metall Mater Trans A 46:2404–2414CrossRefGoogle Scholar
  20. 20.
    Song SX, Bei H, Wadsworth J, Nieh TG (2008) Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 16:813–818CrossRefGoogle Scholar
  21. 21.
    Yoon KS, Lee M, Fleury E, Lee JC (2010) Cryogenic temperature plasticity of a bulk amorphous alloy. Acta Mater 58:5295–5304CrossRefGoogle Scholar
  22. 22.
    Dalla Torre FH, Dubach AD, Nelson A, Löffler JF (2007) Temperature, strain and strain rate dependence of serrated flow in bulk metallic glasses. Mater Trans 48:1774–1780CrossRefGoogle Scholar
  23. 23.
    Klaumünzer D, Maaß R, Dalla Torre FH, Löffler JF (2010) Temperature-dependent shear band dynamics in a Zr-based bulk metallic glass. Appl Phys Lett 96:061901CrossRefGoogle Scholar
  24. 24.
    Qiao JW, Jia HL, Chuang CP, Huang EW, Wang GY, Liaw PK, Ren Y, Zhang Y (2010) Low-temperature shear banding for a Cu-based bulk-metallic glass. Scr Mater 63:871–874CrossRefGoogle Scholar
  25. 25.
    Qiao JW, Yang FQ, Wang GY, Liaw PK, Zhang Y (2010) Jerky-flow characteristics for a Zr-based bulk metallic glass. Scr Mater 63:1081–1084CrossRefGoogle Scholar
  26. 26.
    Qiao JW, Zhang Y, Liaw PK (2010) Serrated flow kinetics in a Zr-based bulk metallic glass. Intermetallics 18:2057–2064CrossRefGoogle Scholar
  27. 27.
    Wang Z, Qiao JW, Tian H, Sun BA, Wang BC, Xu BS, Chen MW (2015) Composition mediated serration dynamics in Zr-based bulk metallic glasses. Appl Phys Lett 107:201902CrossRefGoogle Scholar
  28. 28.
    Thurnheer P, Maaß R, Pogatscher S, Löffler JF (2014) Compositional dependence of shear-band dynamics in the Zr–Cu–Al bulk metallic glass system. Appl Phys Lett 104:101910CrossRefGoogle Scholar
  29. 29.
    Qiao JC, Yao Y, Pelletier JM, Keer LM (2016) Understanding of micro-alloying on plasticity in Cu46Zr47−xAl7Dyx (0 ≤ x ≤ 8) bulk metallic glasses under compression: based on mechanical relaxations and theoretical analysis. Int J Plast 82:62–75CrossRefGoogle Scholar
  30. 30.
    Ren JL, Chen C, Wang G, Cheung WS, Sun BA, Mattern N, Siegmund S, Eckert J (2014) Various sizes of sliding event bursts in the plastic flow of metallic glasses based on a spatiotemporal dynamic model. J Appl Phys 116:033520CrossRefGoogle Scholar
  31. 31.
    Wang G, Chan KC, Xia L, Lu P, Shen J, Wang WH (2009) Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater 57:6146–6155CrossRefGoogle Scholar
  32. 32.
    Tong X, Wang G, Yi J, Ren JL, Pauly S, Gao YL, Zhai QJ, Mattern N, Dahmen KA, Liaw PK, Eckert J (2016) Shear avalanches in plastic deformation of a metallic glass composite. Int J Plast 77:141–155CrossRefGoogle Scholar
  33. 33.
    Schuh CA, Nieh TG (2003) A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater 51:87–99CrossRefGoogle Scholar
  34. 34.
    Golovin YI, Ivolgin VI, Khonik VA, Kitagawa K, Tyurin AI (2001) Serrated plastic flow during nanoindentation of a bulk metallic glass. Scr Mater 45:947–952CrossRefGoogle Scholar
  35. 35.
    Jiang WH, Fan GJ, Liu FX, Wang GY, Choo H, Liaw PK (2008) Spatiotemporally inhomogeneous plastic flow of a bulk-metallic glass. Int J Plast 24:1–16CrossRefGoogle Scholar
  36. 36.
    Wright WJ, Samale MW, Hufnagel TC, LeBlanc MM, Florando JN (2009) Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass. Acta Mater 57:4639–4648CrossRefGoogle Scholar
  37. 37.
    Sarmah R, Ananthakrishna G, Sun BA, Wang WH (2011) Hidden order in serrated flow of metallic glasses. Acta Mater 59:4482–4493CrossRefGoogle Scholar
  38. 38.
    Chen HM, Huang JC, Song SX, Nieh TG, Jang JSC (2009) Flow serration and shear-band propagation in bulk metallic glasses. Appl Phys Lett 94:141914CrossRefGoogle Scholar
  39. 39.
    Maaß R, Klaumünzer D, Löffler JF (2011) Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater 59:3205–3213CrossRefGoogle Scholar
  40. 40.
    Maaß R, Löffler JF (2015) Shear-band dynamics in metallic glasses. Adv Funct Mater 25:2353–2368CrossRefGoogle Scholar
  41. 41.
    Maaß R, Klaumünzer D, Villard G, Derlet PM, Löffler JF (2012) Shear-band arrest and stress overshoots during inhomogeneous flow in a metallic glass. Appl Phys Lett 100:071904CrossRefGoogle Scholar
  42. 42.
    Wang Z, Qiao JW, Wang G, Dahmen KA, Liaw PK, Wang ZH, Wang BC, Xu BS (2015) The mechanism of power-law scaling behavior by controlling shear bands in bulk metallic glass. Mater Sci Eng A 639:663–670CrossRefGoogle Scholar
  43. 43.
    Wang C, Sun BA, Wang WH, Bai HY (2016) Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass. J Appl Phys 119:054902CrossRefGoogle Scholar
  44. 44.
    Hu J, Sun BA, Yang Y, Liu CT, Pauly S, Weng YX, Eckert J (2015) Intrinsic versus extrinsic effects on serrated flow of bulk metallic glasses. Intermetallics 66:31–39CrossRefGoogle Scholar
  45. 45.
    Wu Y, Li HX, Liu ZY, Chen GL, Lu ZP (2010) Interpreting size effects of bulk metallic glasses based on a size-independent critical energy density. Intermetallics 18:157–160CrossRefGoogle Scholar
  46. 46.
    Jiang WH, Liu FX, Liaw PK, Choo H (2007) Shear strain in a shear band of a bulk-metallic glass in compression. Appl Phys Lett 90:181903CrossRefGoogle Scholar
  47. 47.
    Han Z, Wu WF, Li Y, Wei YJ, Gao HJ (2009) An instability index of shear band for plasticity in metallic glasses. Acta Mater 57:1367–1372CrossRefGoogle Scholar
  48. 48.
    Bažant ZP (1984) Size effect in blunt fracture: concrete, rock, metal. J Eng Mech ASCE 110:518–535CrossRefGoogle Scholar
  49. 49.
    Bažant ZP, Planas J (1998) Fracture and size effect in concrete and other quasibrittle materials. CRC Press LLC, Boca RatonGoogle Scholar
  50. 50.
    Wiest A, Duan G, Demetriou MD, Wiest LA, Peck A, Kaltenboeck G, Wiest B, Johnson WL (2008) Zr–Ti-based Be-bearing glasses optimized for high thermal stability and thermoplastic formability. Acta Mater 56:2625–2630CrossRefGoogle Scholar
  51. 51.
    Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S (2007) Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318:251–254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Mechanics, Civil Engineering and ArchitectureNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Department of Earth Sciences, Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands
  3. 3.Université de Lyon, MATEIS, UMR CNRS5510, Bat. B. Pascal, INSA-LyonVilleurbanne CedexFrance

Personalised recommendations