Journal of Materials Science

, Volume 51, Issue 24, pp 10873–10886 | Cite as

Cr doping and heat treatment effect on core–shell Ni nanocluster film

  • J. A. Sundararajan
  • M. KaurEmail author
  • J. Burns
  • Y. Q. Wu
  • T. Schimel
  • Y. QiangEmail author
Original Paper


Core–shell nickel (CS-Ni) and 5 at.% chromium-doped nickel (CS-Ni5Cr) nanocluster (NC) films, prepared by a nanocluster deposition system, were studied for heat treatment (HT)-induced structural, physical, and magnetic property alterations. Understanding the HT influence and oxidation mechanism at nanoscale can make these nanomaterials potential candidates for applications that involve stainless steel alloys. The contribution of Cr doping in altering the microstructural and relative oxidation kinetics was investigated in detail before and after the HT. The oxidation mechanism describes that the cation diffusivity increases following the doping of 5 at.% of Cr in Ni, which makes the oxidation rate of Ni5Cr HT higher than that of Ni-HT. At a temperature of 600 °C, a dramatic change was observed in surface morphology with many island-like nanostructures on the surface of Ni5Cr. The interface structure of the Cr-rich oxide layer plays a key role in the islands formation via agglomeration of NCs. The as-prepared and HT samples were analyzed by transmission electron microscopy, atomic force microscopy, magnetic force microscopy, energy-dispersive spectroscopy, and vibrating sample magnetometer to provide an insight on the effectiveness of chromium-doped nickel film.


Heat Treatment Magnetic Force Microscope Heat Treatment Sample Lift Height Magnetic Force Microscope Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by U.S. Department of Energy (DOE) under Contract DE-FC07-08ID14926, by the INL-LDRD administered by the Center for Advanced Energy Studies (CAES) under the DOE Contract DE-AC07-05ID14517.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhang XX, Wen GH, Huang S, Dai L, Gao R, Wang ZL (2001) Magnetic properties of Fe nanoparticles trapped at the tips of the aligned carbon nanotubes. J Magn Magn Mater 231:9–12CrossRefGoogle Scholar
  2. 2.
    Hu S, Li Y, McCloy J, Montgomery R, Henager CJ (2013) Magnetic hardening from the suppression of domain walls by nonmagnetic particles. IEEE Magn Lett 4:3500104CrossRefGoogle Scholar
  3. 3.
    Hu J, Chen G, Lo IMC (2005) Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res 39:4528–4536CrossRefGoogle Scholar
  4. 4.
    Hu J, Chen G, Lo I (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132:709–715CrossRefGoogle Scholar
  5. 5.
    Kaur M, Zhang H, Martin L, Todd T, Qiang Y (2013) Conjugates of magnetic nanoparticle—actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959CrossRefGoogle Scholar
  6. 6.
    Kaur M, Johnson A, Tian G, Jiang W, Rao L, Paszczynski A, Qiang Y (2013) Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy 2:124–132CrossRefGoogle Scholar
  7. 7.
    Makhlouf SA, Parker FT, Spada FE, Berkowitz AE (1997) Magnetic anomalies in NiO nanoparticles. J Appl Phys 81:5561–5563CrossRefGoogle Scholar
  8. 8.
    Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393–1396CrossRefGoogle Scholar
  9. 9.
    Ichiyanagi Y, Wakabayashi N, Yamazaki J, Yamada S, Kimishima Y, Komatsu E, Tajima H (2003) Magnetic properties of NiO nanoparticles. Phys B Condens Matter 329–333, Part 2:862–863Google Scholar
  10. 10.
    Smart JS, Greenwald S (1951) Crystal structure transitions in antiferromagnetic compounds at the curie temperature. Phys Rev 82:113–114CrossRefGoogle Scholar
  11. 11.
    Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh H-J, Park J-H, Bae CJ, Park J-G, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction. Adv Mater 17:429–434CrossRefGoogle Scholar
  12. 12.
    Guan YF, Pearce RC, Melechko AV, Hensley DK, Simpson ML, Rack PD (2008) Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth. Nanotechnology 19:235604CrossRefGoogle Scholar
  13. 13.
    Huang ZP, Wang DZ, Wen JG, Sennett M, Gibson H, Ren ZF (2002) Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl Phys A 74:387–391CrossRefGoogle Scholar
  14. 14.
    Caruge J-M, Halpert JE, Bulović V, Bawendi MG (2006) NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices. Nano Lett 6:2991–2994CrossRefGoogle Scholar
  15. 15.
    McClintock DA, Sokolov MA, Hoelzer DT, Nanstad RK (2009) Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT. J Nucl Mater 392:353–359CrossRefGoogle Scholar
  16. 16.
    Mukhopadhyay DK, Froes FH, Gelles DS (1998) Development of oxide dispersion strengthened ferritic steels for fusion. J Nucl Mater 258–263, Part 2:1209–1215Google Scholar
  17. 17.
    McCloy JS, Jiang W, Droubay TC, Varga T, Kovarik L, Sundararajan JA, Kaur M, Qiang Y, Burks EC, Liu K (2013) Ion irradiation of Fe-Fe oxide core-shell nanocluster films: effect of interface on stability of magnetic properties. J Appl Phys 114:083903–083903–9CrossRefGoogle Scholar
  18. 18.
    Kaur M, Qiang Y, Jiang W, Pearce C, McCloy JS (2014) Magnetization Measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials. IEEE Trans Magn 50:1–5CrossRefGoogle Scholar
  19. 19.
    Wang ZK, Kuok MH, Ng SC, Lockwood DJ, Cottam MG, Nielsch K, Wehrspohn RB, Gösele U (2002) Spin-wave quantization in ferromagnetic nickel nanowires. Phys Rev Lett 89:027201CrossRefGoogle Scholar
  20. 20.
    Johnston-Peck AC, Wang J, Tracy JB (2009) Synthesis and structural and magnetic characterization of Ni(core)/NiO(shell) nanoparticles. ACS Nano 3:1077–1084CrossRefGoogle Scholar
  21. 21.
    Ahmad T, Ramanujachary KV, Lofland SE, Ganguli AK (2006) Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route. Solid State Sci 8:425–430CrossRefGoogle Scholar
  22. 22.
    Davar F, Fereshteh Z, Salavati-Niasari M (2009) Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J Alloys Compd 476:797–801CrossRefGoogle Scholar
  23. 23.
    Kaur M, McCloy JS, Jiang W, Yao Q, Qiang Y (2012) Size dependence of inter- and intracluster interactions in core-shell iron–iron oxide nanoclusters. J Phys Chem C 116:12875–12885CrossRefGoogle Scholar
  24. 24.
    Kaur M, McCloy JS, Qiang Y (2013) Exchange bias in core-shell iron-iron oxide nanoclusters. J Appl Phys 113:17D715–17D715–3CrossRefGoogle Scholar
  25. 25.
    Kaur M, Dai Q, Bowden M, Engelhard M, Wu Y, Tang J, Qiang Y (2013) Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters. Appl Phys Lett 103:202407CrossRefGoogle Scholar
  26. 26.
    Gich M, Shafranovsky EA, Roig A, Ślawska-Waniewska A, Racka K, Casas L, Petrov YI, Molins E, Thomas MF (2005) Aerosol nanoparticles in the Fe1—xCrx system: room-temperature stabilization of the σ phase and σ→α-phase transformation. J Appl Phys 98:024303–024303–8Google Scholar
  27. 27.
    Racka K, Ślawska-Waniewska A, Krzyżewski A, Gich M, Roig A, Shafranovsky EA, Petrov YI (2008) Magnetic behaviour of Fe–Cr nanoparticle systems. J Magn Magn Mater 320:e683–e687CrossRefGoogle Scholar
  28. 28.
    Kaur M, Dai Q, Bowden M, Engelhard MH, Wu Y, Tang J, Qiang Y (2013) Watermelon-like iron nanoparticles: Cr doping effect on magnetism and magnetization interaction reversal. Nanoscale 5:7872–7881CrossRefGoogle Scholar
  29. 29.
    Wang C-M, Baer DR, Bruemmer SM, Engelhard MH, Bowden ME, Sundararajan JA, Qiang Y (2011) Microstructure of the native oxide layer on Ni and Cr-doped Ni nanoparticles. J Nanosci Nanotechnol 11:8488–8497CrossRefGoogle Scholar
  30. 30.
    Wang C-M, Genc A, Cheng H, Pullan L, Baer DR, Bruemmer SM (2014) In-Situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles. Sci Rep 4:3683Google Scholar
  31. 31.
    Chen Y, Peng D-L, Lin D, Luo X (2007) Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines. Nanotechnology 18:505703CrossRefGoogle Scholar
  32. 32.
    Rosen MJ, Kunjappu JT (2010) Surfactants and interfacial phenomena. Wiley, New JerseyGoogle Scholar
  33. 33.
    Thompson CV, Carel R (1996) Stress and grain growth in thin films. J Mech Phys Solids 44:657–673CrossRefGoogle Scholar
  34. 34.
    Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale kirkendall effect. Science 304:711–714CrossRefGoogle Scholar
  35. 35.
    Anumol EA, Viswanath B, Ganesan PG, Shi Y, Ramanath G, Ravishankar N (2010) Surface diffusion driven nanoshell formation by controlled sintering of mesoporous nanoparticle aggregates. Nanoscale 2:1423–1425CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of IdahoMoscowUSA
  2. 2.Micron School of Materials Science and EngineeringBoise State UniversityBoiseUSA
  3. 3.Center for Advanced Energy StudiesIdaho FallsUSA

Personalised recommendations