Advertisement

Journal of Materials Science

, Volume 51, Issue 22, pp 10245–10261 | Cite as

Ge- and Al-related point defects generated by gamma irradiation in nanostructured erbium-doped optical fiber preforms

  • M. León
  • M. Lancry
  • N. Ollier
  • B. H. Babu
  • L. Bigot
  • H. El Hamzaoui
  • I. Savelii
  • A. Pastouret
  • E. Burov
  • F. Trompier
  • B. Poumellec
  • M. Bouazaoui
Original Paper

Abstract

Erbium-doped amplifiers (EDFAs) are of special interest for space applications. In this environment, the ionizing radiations decrease the gain of these optical amplifiers, due to the ionization of defects precursors, mainly linked to dopants as Germanium (Ge), Aluminum (Al), or Phosphorus (P). The aim of this work is to study the influence of the Ge and Al relative concentration on the radiation resistance of different nanostructured fiber preforms, manufactured by Modified Chemical Vapor Deposition (MCVD), in which various types of nanoparticles (Er@SiO2-NP, Al2O3-NP, and Er@Al2O3-NP) have been introduced in the silica matrix. The radiation resistance of these fibers has been compared with that of standard MCVD Er-doped preforms. All of them have been characterized by optical absorption and Electronic Paramagnetic Resonance (EPR) spectroscopies before and after irradiation with a total gamma dose of 5.9 kGy. EPR results show that Al-related defects are not observed in fiber preforms with Ge concentrations higher than 4.4 wt%. We also demonstrated that NP technology can limit the formation of Aluminum-Oxygen Hole Centers (AlOHCs), reducing the Radiation-Induced Attenuation at the energy of interest for EDFAs.

Keywords

Fiber Preform Electron Paramagnetic Resonance Optical Absorption Band Paramagnetic Defect Modify Chemical Vapor Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the financial support of the French national research agency through the NANOFIBER project (ANR-12-RMNP-0019). This work was also partially supported by the Nord-Pas de Calais Regional Council and FEDER through the “Contrat de ProjetsEtat Region (CPER) 2007-2013,” the “Campus Intelligence Ambiante” (CIA), the FLUX Equipex Project (ANR-11-EQPX-0017), and the Labex CEMPI (ANR-11-LABX-0007).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Agrawal GP (2010) Optical fibers. Fiber-optic communication system. Wiley, Newyork, pp 24–78CrossRefGoogle Scholar
  2. 2.
    Richardson DJ, Fini JM, Nelson LE (2013) Space-division multiplexing in optical fibres. Nat Photonics 7:354–362. doi: 10.1038/nphoton.2013.94 CrossRefGoogle Scholar
  3. 3.
    Chan VWS (2003) Optical Satellite Networks. J Light Technol 21:2811CrossRefGoogle Scholar
  4. 4.
    Girard S, Laurent A, Pinsard E et al (2014) Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions. Opt Lett 39:2541. doi: 10.1364/OL.39.002541 CrossRefGoogle Scholar
  5. 5.
    Girard S, Marcandella C, Morana A et al (2013) Combined high dose and temperature radiation effects on multimode silica-based optical fibers. IEEE Trans Nucl Sci 60:4305–4313. doi: 10.1109/TNS.2013.2281832 CrossRefGoogle Scholar
  6. 6.
    León M, Martín P, Ibarra A, Hodgson ER (2009) Gamma irradiation induced defects in different types of fused silica. J Nucl Mater 386–388:1034–1037. doi: 10.1016/j.jnucmat.2008.12.232 CrossRefGoogle Scholar
  7. 7.
    Mebrouk Y, Mady F, Benabdesselam M et al (2014) Experimental evidence of Er^3+ ion reduction in the radiation-induced degradation of erbium-doped silica fibers. Opt Lett 39:6154. doi: 10.1364/OL.39.006154 CrossRefGoogle Scholar
  8. 8.
    Girard S, Kuhnhenn J, Gusarov A et al (2013) Radiation effects on silica-based optical fibers: recent advances and future challenges. IEEE Trans Nucl Sci 60:2015–2036. doi: 10.1109/TNS.2012.2235464 CrossRefGoogle Scholar
  9. 9.
    Girard S, Vivona M, Laurent A et al (2012) Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application. Opt Express 20:8457. doi: 10.1364/OE.20.008457 CrossRefGoogle Scholar
  10. 10.
    Skuja L, Kajihara K, Hirano M, Hosono H (2012) Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials. Nucl Instrum Methods Phys Res Sect B 286:159–168. doi: 10.1016/j.nimb.2012.02.038 CrossRefGoogle Scholar
  11. 11.
    Skuja L, Hirano M, Hosono H, Kajihara K (2005) Defects in oxide glasses. Phys Status Solidi C 2:15–24. doi: 10.1002/pssc.200460102 CrossRefGoogle Scholar
  12. 12.
    Awazu K, Kawazoe H (2003) Strained Si–O–Si bonds in amorphous SiO2 materials: a family member of active centers in radio, photo, and chemical responses. J Appl Phys 94:6243–6262. doi: 10.1063/1.1618351 CrossRefGoogle Scholar
  13. 13.
    Skuja L (1998) Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J Non-Cryst Solids 239:16–48. doi: 10.1016/S0022-3093(98)00720-0 CrossRefGoogle Scholar
  14. 14.
    León M, Giacomazzi L, Girard S et al (2014) Neutron irradiation effects on the structural properties of KU1, KS-4 V and I301 silica glasses. IEEE Trans Nucl Sci 61:1522–1530. doi: 10.1109/TNS.2013.2294033 CrossRefGoogle Scholar
  15. 15.
    León M, Martín P, Vila R et al (2009) Neutron irradiation effects on optical absorption of KU1 and KS-4 V quartz glasses and Infrasil 301. Fusion Eng Des 84:1174–1178. doi: 10.1016/j.fusengdes.2008.11.046 CrossRefGoogle Scholar
  16. 16.
    Quimby RS, Miniscalco WJ, Thompson B (1994) Clustering in erbium-doped silica glass fibers analyzed using 980 nm excited-state absorption. J Appl Phys 76:4472–4478. doi: 10.1063/1.357278 CrossRefGoogle Scholar
  17. 17.
    Arai K, Namikawa H, Kumata K et al (1986) Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J Appl Phys 59:3430–3436. doi: 10.1063/1.336810 CrossRefGoogle Scholar
  18. 18.
    Brichard B, Fernandez AF, Fern E, et al (2003) Gamma dose rate effect in erbium-doped fibers for space gyroscopes. Proc 16th Int. Conf. Opt. Fiber SensGoogle Scholar
  19. 19.
    Troussellier L (2009) Etude de l’influence des radiations sur les fibres dopées erbium pour l’amplificateur optique embarqué. PhD Dissertation, Université Montpellier IIGoogle Scholar
  20. 20.
    Girard S, Tortech B, Regnier E et al (2007) Proton- and gamma-induced effects on erbium-doped optical fibers. IEEE Trans Nucl Sci 54:2426–2434. doi: 10.1109/TNS.2007.910859 CrossRefGoogle Scholar
  21. 21.
    Trukhin AN, Jansons JL, Truhins K (2004) Luminescence of silica glass containing aluminum oxide. J Non-Cryst Solids 347:80–86. doi: 10.1016/j.jnoncrysol.2004.08.100 CrossRefGoogle Scholar
  22. 22.
    Deschamps T, Vezin H, Gonnet C, Ollier N (2013) Evidence of AlOHC responsible for the radiation-induced darkening in Yb doped fiber. Opt Express 21:8382. doi: 10.1364/OE.21.008382 CrossRefGoogle Scholar
  23. 23.
    Hideo H, Hiroshi K (1994) Radiation-induced coloring and paramagnetic centers in synthetic SiO2: Al glasses. Nucl Instrum Methods Phys Res Sect B 91:395–399. doi: 10.1016/0168-583X(94)96255-3 CrossRefGoogle Scholar
  24. 24.
    Lagomacini JC, Bravo D, Martín A et al (2014) Growth kinetics of AlOHC defects in γ-irradiated silica glasses. J Non-Cryst Solids 403:5–8. doi: 10.1016/j.jnoncrysol.2014.04.005 CrossRefGoogle Scholar
  25. 25.
    Brower KL (1979) Electron paramagnetic resonance of Al E1’ centers in vitreous silica. Phys Rev B 20:1799–1811. doi: 10.1103/PhysRevB.20.1799 CrossRefGoogle Scholar
  26. 26.
    Brower KL (1978) Structural and trapping characteristics of a new al defect in vitreous silica. Phys Rev Lett 41:879–881. doi: 10.1103/PhysRevLett.41.879 CrossRefGoogle Scholar
  27. 27.
    Griscom DL (2013) A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-ir absorption bands, with emphasis on self-trapped holes and how they can be controlled. Phys Res Int 2013:e379041. doi: 10.1155/2013/379041 CrossRefGoogle Scholar
  28. 28.
    Skuja L (2000) Optical properties of defects in silica. In: Pacchioni G, Skuja L, Griscom DL (eds) Defects SiO2 related dielectrics science and technology. Springer, Netherlands, pp 73–116CrossRefGoogle Scholar
  29. 29.
    Alessi A, Agnello S, Sporea DG et al (2010) Formation of optically active oxygen deficient centers in Ge-doped SiO2 by γ- and β-ray irradiation. J Non-Cryst Solids 356:275–280. doi: 10.1016/j.jnoncrysol.2009.11.016 CrossRefGoogle Scholar
  30. 30.
    Friebele EJ, Griscom DL (1985) Color Centers in Glass Optical Fiber Waveguides. In: Symp. P – Defects Glas. p 319 (13 pages)Google Scholar
  31. 31.
    Neustruev VB (1994) Colour centres in germanosilicate glass and optical fibres. J Phys: Condens Matter 6:6901. doi: 10.1088/0953-8984/6/35/003 Google Scholar
  32. 32.
    Skuja L (1992) Isoelectronic series of 2fold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study. J Non-Cryst Solids 149:77–95. doi: 10.1016/0022-3093(92)90056-P CrossRefGoogle Scholar
  33. 33.
    Nalwa HS (2001) Silicon-based material and devices, two-volume set: materials and processing, Properties and Devices. Academic Press, San DiegoGoogle Scholar
  34. 34.
    Fujimaki M, Kasahara T, Shimoto S et al (1999) Structural changes induced by KrF excimer laser photons in H2-loaded Ge-doped SiO2 glass. Phys Rev B 60:4682–4687. doi: 10.1103/PhysRevB.60.4682 CrossRefGoogle Scholar
  35. 35.
    Gallagher M, Osterberg U (1993) Spectroscopy of defects in germanium-doped silica glass. J Appl Phys 74:2771–2778. doi: 10.1063/1.354625 CrossRefGoogle Scholar
  36. 36.
    Agnello S, Alessi A, Gelardi FM et al (2008) Effect of oxygen deficiency on the radiation sensitivity of sol-gel Ge-doped amorphous SiO2. Eur Phys J B 61:25–31. doi: 10.1140/epjb/e2008-00025-1 CrossRefGoogle Scholar
  37. 37.
    Giacomazzi L, Martin-Samos L, Boukenter A et al (2015) Ge(2), Ge(1) and Ge-E’ centers in irradiated Ge-doped silica: a first-principles EPR study. Opt Mater Express 5:1054. doi: 10.1364/OME.5.001054 CrossRefGoogle Scholar
  38. 38.
    Watanabe Y, Kawazoe H, Shibuya K, Muta K (1986) Structure and mechanism of formation of drawing- or radiation-induced defects in SiO2:GeO2 optical fiber. Jpn J Appl Phys 25:425–431. doi: 10.1143/JJAP.25.425 CrossRefGoogle Scholar
  39. 39.
    Rose TS, Gunn D, Valley GC (2001) Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements. J Light Technol 19:1918–1923. doi: 10.1109/50.971685 CrossRefGoogle Scholar
  40. 40.
    Kirchhof J, Unger S (1999) Codoping Effects in Fibers for Active Applications. In: Opt. Fiber Commun. Conf. Int. Conf. Integr. Opt. Opt. Fiber Commun. 1999 Pap. WM1. Optical Society of America, p WM1Google Scholar
  41. 41.
    Likhachev ME, Bubnov MM, Zotov KV et al (2013) Radiation resistance of er-doped silica fibers: effect of host glass composition. J Light Technol 31:749–755. doi: 10.1109/JLT.2012.2233196 CrossRefGoogle Scholar
  42. 42.
    Mashinsky VM, Neustruev VB, Tomashuk AL (1992) The mechanism of the γ-irradiation effect on the bandwidth of multimode graded-index fibres. Sov Light Commun 2:311–320Google Scholar
  43. 43.
    Leon-Pichel M, Lancry M, Ollier N, et al (2015) Influence of Al/Ge ratio on radiation-induced attenuation in nanostructured erbium-doped fibers preforms. OSA, p SM3L.8Google Scholar
  44. 44.
    Podrazky O, Kasik I, Pospisilova M, Matejec V (2009) Use of nanoparticles for preparation of rare-earth doped silica fibers. Phys Status Solidi C 6:2228–2230. doi: 10.1002/pssc.200881727 CrossRefGoogle Scholar
  45. 45.
    Pastouret A, Gonnet C, Collet C, et al (2009) Nanoparticle doping process for improved fibre amplifiers and lasers. p 71951X–71951X–8Google Scholar
  46. 46.
    Heraeus Quarzglas—Downloads. http://heraeus-quarzglas.com/en/downloads/heraeusquarzglas_1/Downloads.aspx. Accessed 23 Apr 2016
  47. 47.
    Anedda A, Carbonaro CM, Corpino R, Serpi A (2001) Absorption spectrum of Ge-doped silica samples and fiber preforms in the vacuum ultraviolet region. J Non-Cryst Sol 280:281–286. doi: 10.1016/S0022-3093(00)00386-0 CrossRefGoogle Scholar
  48. 48.
    Skuja L (1994) The origin of the intrinsic 1.9 eV luminescence band in glassy SiO2. J Non-Cryst Sol 179:51–69. doi: 10.1016/0022-3093(94)90684-X CrossRefGoogle Scholar
  49. 49.
    Skuja L, Suzuki T, Tanimura K (1995) Site-selective laser-spectroscopy studies of the intrinsic 1.9-eV luminescence center in glassy SiO2. Phys Rev B 52:15208–15216. doi: 10.1103/PhysRevB.52.15208 CrossRefGoogle Scholar
  50. 50.
    Leon M, Martin P, Vila R et al (2010) Vacuum ultraviolet excitation spectra of the 1.9 eV luminescence in neutron irradiated KU1 and KS-4 V quartz glasses and INFRASIL 301. IOP Conf Ser Mater Sci Eng 15:12051. doi: 10.1088/1757-899X/15/1/012051 CrossRefGoogle Scholar
  51. 51.
    Alessi A, Agnello S, Grandi S et al (2009) Refractive index change dependence on Ge(1) defects in gamma-irradiated Ge-doped silica. Phys Rev B 80:14103. doi: 10.1103/PhysRevB.80.014103 CrossRefGoogle Scholar
  52. 52.
    Dong L, Archambault JL, Reekie L et al (1995) Photoinduced absorption change in germanosilicate preforms: evidence for the color-center model of photosensitivity. Appl Opt 34:3436. doi: 10.1364/AO.34.003436 CrossRefGoogle Scholar
  53. 53.
    Alessi A, Agnello S, Gelardi FM et al (2011) Influence of Ge doping level on the EPR signal of Ge(1), Ge(2) and E’Ge defects in Ge-doped silica. J Non-Cryst Sol 357:1900–1903. doi: 10.1016/j.jnoncrysol.2010.11.108 CrossRefGoogle Scholar
  54. 54.
    Takahashi M, Shigemura H, Kawamoto Y et al (1999) Photochemical reactions of Ge-related defects in 10GeO2·90SiO2 glass prepared by sol–gel process. J Non-Cryst Sol 259:149–155. doi: 10.1016/S0022-3093(99)00504-9 CrossRefGoogle Scholar
  55. 55.
    Alessi A, Agnello S, Gelardi FM et al (2009) Concentration growth and thermal stability of γ-ray induced germanium lone pair center in Ge-doped sol–gel a-SiO2. J Non-Cryst Sol 355:1050–1053. doi: 10.1016/j.jnoncrysol.2008.11.032 CrossRefGoogle Scholar
  56. 56.
    Presby HM (1981) Fluorescence profiling of single-mode optical fiber preforms. Appl Opt 20:446. doi: 10.1364/AO.20.000446 CrossRefGoogle Scholar
  57. 57.
    Griscom DL (2011) On the natures of radiation-induced point defects in GeO_2-SiO_2 glasses: reevaluation of a 26-year-old ESR and optical data set. Opt Mater Express 1:400. doi: 10.1364/OME.1.000400 CrossRefGoogle Scholar
  58. 58.
    Fujimaki M, Watanabe T, Katoh T et al (1998) Structures and generation mechanisms of paramagnetic centers and absorption bands responsible for Ge-doped SiO2 optical-fiber gratings. Phys Rev B 57:3920–3926. doi: 10.1103/PhysRevB.57.3920 CrossRefGoogle Scholar
  59. 59.
    Babu BH, Ollier N, Pichel ML et al (2015) Radiation hardening in sol-gel derived Er3+ -doped silica glasses. J Appl Phys 118:123107. doi: 10.1063/1.4932018 CrossRefGoogle Scholar
  60. 60.
    Hanada T, Soga N (1982) Coordination and bond character of silicon and aluminum ions in amorphous thin films in the system SiO2–Al2O3. J Am Ceram Soc 65:c84–c86. doi: 10.1111/j.1151-2916.1982.tb10456.x CrossRefGoogle Scholar
  61. 61.
    Poe BT, McMillan PF, Angell CA, Sato RK (1992) Al and Si coordination in SiO21bAl2O3 glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem Geol 96:333–349. doi: 10.1016/0009-2541(92)90063-B CrossRefGoogle Scholar
  62. 62.
    Morikawa H, Miwa S-I, Miyake M et al (1982) Structural analysis of SiO2–Al2O3 Glasses. J Am Ceram Soc 65:78–81. doi: 10.1111/j.1151-2916.1982.tb10361.x CrossRefGoogle Scholar
  63. 63.
    Chiche D, Chanéac C, Revel R, Jolivet J-P (2006) Size and Shape Control of γ-AlOOH Boehmite Nanoparticles, a Precursor of γ-Al2O3 Catalyst. In: E.M. Gaigneaux MD DE De Vos, S Hermans, PA Jacobs, JA Martens and P Ruiz (ed) Stud. Surf. Sci. Catal. Elsevier, pp 393–400Google Scholar
  64. 64.
    Shirai T, Watanabe H, Fuji M (2009) Structural properties and surface characteristics on aluminum oxide powders. Annu Rep Ceram Res Lab Nagoya Inst Technol 9:23–31Google Scholar
  65. 65.
    Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81:1995–2012. doi: 10.1111/j.1151-2916.1998.tb02581.x CrossRefGoogle Scholar
  66. 66.
    John CS, Alma NCM, Hays GR (1983) Characterization of transitional alumina by solid-state magic angle spinning aluminium NMR. Appl Catal 6:341–346. doi: 10.1016/0166-9834(83)80106-7 CrossRefGoogle Scholar
  67. 67.
    Lee M-H, Cheng C-F, Heine V, Klinowski J (1997) Distribution of tetrahedral and octahedral A1 sites in gamma alumina. Chem Phys Lett 265:673–676. doi: 10.1016/S0009-2614(96)01492-3 CrossRefGoogle Scholar
  68. 68.
    Krokidis X, Raybaud P, Gobichon A-E et al (2001) Theoretical Study of the Dehydration Process of Boehmite to γ-Alumina. J Phys Chem B 105:5121–5130. doi: 10.1021/jp0038310 CrossRefGoogle Scholar
  69. 69.
    Lizárraga R, Holmström E, Parker SC, Arrouvel C (2011) Structural characterization of amorphous alumina and its polymorphs from first-principles XPS and NMR calculations. Phys Rev B 83:94201. doi: 10.1103/PhysRevB.83.094201 CrossRefGoogle Scholar
  70. 70.
    Pecharromán C, Sobrados I, Iglesias JE et al (1999) Thermal Evolution of transitional aluminas followed by NMR and IR spectroscopies. J Phys Chem B 103:6160–6170. doi: 10.1021/jp983316q CrossRefGoogle Scholar
  71. 71.
    Kovarik L, Bowden M, Genc A et al (2014) Structure of δ-alumina: toward the atomic level understanding of transition alumina phases. J Phys Chem C 118:18051–18058. doi: 10.1021/jp500051j CrossRefGoogle Scholar
  72. 72.
    O’Dell LA, Savin SLP, Chadwick AV, Smith ME (2007) A (27)Al MAS NMR study of a sol-gel produced alumina: identification of the NMR parameters of the theta-Al(2)O(3) transition alumina phase. Sol State Nucl Magn Reson 31:169–173. doi: 10.1016/j.ssnmr.2007.05.002 CrossRefGoogle Scholar
  73. 73.
    Kovarik L, Bowden M, Shi D et al (2015) Unraveling the origin of structural disorder in high temperature transition Al2O3: structure of θ-Al2O3. Chem Mater 27:7042–7049. doi: 10.1021/acs.chemmater.5b02523 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. León
    • 1
    • 2
  • M. Lancry
    • 1
  • N. Ollier
    • 2
  • B. H. Babu
    • 1
    • 2
  • L. Bigot
    • 3
  • H. El Hamzaoui
    • 3
  • I. Savelii
    • 3
  • A. Pastouret
    • 4
  • E. Burov
    • 4
  • F. Trompier
    • 5
  • B. Poumellec
    • 1
  • M. Bouazaoui
    • 3
  1. 1.Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR CNRS-UPSud 8182OrsayFrance
  2. 2.Laboratoire de solides irradiés (LSI), UMR 7642Ecole PolytechniquePalaiseau CedexFrance
  3. 3.Univ-Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers AtomesetMoléculesLilleFrance
  4. 4.Draka Comteq France SAS, Parc des Industries Artois FlandresHaisnes CedexFrance
  5. 5.Institut de Radioprotection et de Sûreté Nucléaire (IRSN)Fontenay-Aux-RosesFrance

Personalised recommendations