Journal of Materials Science

, Volume 51, Issue 22, pp 10139–10159 | Cite as

Molecular dynamics simulations of the structure and mechanical properties of silica glass using ReaxFF

  • Sanjib C. Chowdhury
  • Bazle Z. (Gama) Haque
  • John W. GillespieJr.
Original Paper

Abstract

Assessment of the empirical reactive force field ReaxFF to predict the formation of amorphous silica from its crystalline structure and the determination of mechanical properties under tension using molecular dynamics simulations is presented. Detailed procedures for preparing amorphous silica from crystalline silica are presented and the atomic structure is in good agreement with experimental results. Tensile properties of silica are predicted over a wide range of strain rates (2.3 × 108 s−1–1.0 × 1015 s−1) allowing comparison with results reported in the literature for other force fields. Quasi-static modulus obtained from power-law fitting of the low-stain rate modulus predicted by ReaxFF is in good agreement with experimental results. A transition strain rate of approximately \( 2.5 \times 10^{11} {\text{s}}^{ - 1} \) is identified where modulus increases rapidly to a plateau level. Tensile strength also increases significantly in this range of strain rate and plateaus at the theoretical upper bound for silica. A detailed study is presented to understand the mechanisms associated with strain rate effects on the overall stress–strain response of silica. Bond breakage which evolves into void growth leading to failure is predicted to occur at approximately 27 % strain for all strain rates. Stress relaxation simulations indicates that the transition strain rate occurs when the characteristic time for high-strain rate loading and stress relaxation times are the same order. The effects of cooling rate and temperature on the structure and the stress–strain response of the silica glass are also investigated. Low-cooling rate and low-cooling temperature enhance the properties of silica.

References

  1. 1.
    Kupiec K, Konieczka P, Namiesnik J (2009) Characteristics, chemical modification processes as well as the application of silica and its modified form. Crit Rev Anal Chem 39(2):60–69CrossRefGoogle Scholar
  2. 2.
    Qhobosheane M, Santra S, Zhang P, Tan W (2001) Biochemically functionalized silica nanoparticles. Analyst 126(8):1274–1278CrossRefGoogle Scholar
  3. 3.
    Bhushan B (2007) Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron Eng 84(3):387–412CrossRefGoogle Scholar
  4. 4.
    Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24(5):621–638CrossRefGoogle Scholar
  5. 5.
    Thyagarajan KS, Ghatak A (2007) Fiber Optic Essentials. John Wiley & Sons Inc, New Jersey, USACrossRefGoogle Scholar
  6. 6.
    Kurkjian CR, Krause JT, Matthewson MJ (1989) Strength and fatigue of silica optical fibers. J Lightwave Technol 7(9):1360–1370CrossRefGoogle Scholar
  7. 7.
    Wallenberger FT, Bingham PA (2010) Fiberglass and glass technology: energy-friendly compositions and applications. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Mallick PK (1993) Fiber reinforced composites: materials, manufacturing and design, 3rd edn. CRC Press, FloridaGoogle Scholar
  9. 9.
    Schaible M (1999) Empirical molecular dynamics modeling of silicon and silicon dioxide: a review. Crit Rev Solid State Mater Sci 24(4):265–323CrossRefGoogle Scholar
  10. 10.
    Ochoa R, Swiler TP, Simmons JH (1991) Molecular dynamics studies of brittle failure in silica: effect of thermal vibrations. J Non-Cryst Solids 128:57–68CrossRefGoogle Scholar
  11. 11.
    Muralidharan K, Oh KD, Deymier PA, Runge K, Simmons JH (2007) Molecular dynamics simulations of atomic-level brittle fracture mechanism in amorphous silica. J Mater Sci 42:4159–4169. doi:10.1007/s10853-007-1638-2 CrossRefGoogle Scholar
  12. 12.
    Pedone A, Malavasi G, Menziani MC, Segre U (2008) Cormack AN (2008) Molecular dynamics studies of stress-strain behavior of silica glass under a tensile load. Chem Mater 20:4356–4366CrossRefGoogle Scholar
  13. 13.
    Erikson RL, Hostelter CJ (1987) Application of empirical ionic models to SiO2 liquid: potential model approximations and integration of SiO2 polymorph data. Geochim Cosmochim Acta 51:1209–1218CrossRefGoogle Scholar
  14. 14.
    Smith WA, Michalske TM (1990) US-DOE Contract DE-AC04-0DPOO789Google Scholar
  15. 15.
    Proctor BA, Whitney I, Johnson JW (1967) The strength of fused silica. Proc R Soc London Ser A 297(1451):534–557CrossRefGoogle Scholar
  16. 16.
    Wallenberger FT, Watson JC, Li H (2001) Glass fibers. ASM Handbook 21:27–34Google Scholar
  17. 17.
    Wiederhorn SM (1969) Fracture surface energy of glass. J Am Ceram Soc 52(2):99–105CrossRefGoogle Scholar
  18. 18.
    Swiler TP, Simmons JH, Wright AC (1995) Molecular dynamics study of brittle fracture in silica glass and cristobalite. J Non-Cryst Solids 182:68–77CrossRefGoogle Scholar
  19. 19.
    Born VM, Mayer JE (1932) Zur Gittertheorie der Ionenkristalle. Z für Phys 75:1–18CrossRefGoogle Scholar
  20. 20.
    Huggins ML, Mayer JE (1933) Interatomic distances in crystals of the alkali halides. J Chem Phys 1:643–646CrossRefGoogle Scholar
  21. 21.
    Mayer JE (1933) Dispersion and polarizability and the van der Waals potential in the alkali halides. J Chem Phys 1:270–279CrossRefGoogle Scholar
  22. 22.
    Soules TF (1990) Computer simulation of glass structures. J Non-Cryst Solids 123:48–70CrossRefGoogle Scholar
  23. 23.
    van Beest BWH, Kramer GJ, van Santeen RA (1990) Force fields for silicas and aluminophosphates based on ab initio calculations. Phys Rev Lett 64(16):1955–1958CrossRefGoogle Scholar
  24. 24.
    Pedone A, Malavasi G, Menziani MC, Cormack AN, Segre U (2006) A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J Phys Chem B 110:11780–11795CrossRefGoogle Scholar
  25. 25.
    Wang J, Rajendran AM, Dongare AM (2015) Atomic scale modeling of shock response of fused silica α-quartz. J Mater Sci 50:8128–8141. doi:10.1007/s10853-015-9386-1 CrossRefGoogle Scholar
  26. 26.
    Tersoff J (1988) New empirical approach for the structure and energy of covalent system. Phys Rev B 37(12):6991–7000CrossRefGoogle Scholar
  27. 27.
    Munetoh S, Motooka T, Moriguchi K, Shintani A (2007) Interatomic potential for Si-O systems using Tersoff parameterization. Comput Mater Sci 39(2):334–339CrossRefGoogle Scholar
  28. 28.
    Tsuneyuki S, Tsukada M, Aoki H, Matsui Y (1988) 1st principles interatomic potential of silica applied to molecular dynamics. Phys Rev Lett 61(7):869–872CrossRefGoogle Scholar
  29. 29.
    van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105:9396–9409CrossRefGoogle Scholar
  30. 30.
  31. 31.
    van Duin ACT, Strachan A, Stewman S, Zhang Q, Xin Xu, Goddard WA (2003) ReaxFFSiO reactive force field for silicon and silicon oxide system. J Phys Chem A 107:3803–3811CrossRefGoogle Scholar
  32. 32.
    Fogarty JC, Aktulga HM, Grama AY, van Duin ACT, Pandit S (2010) A reactive molecular dynamics simulation of the silica-water interface. J Chem Phys 132:174704CrossRefGoogle Scholar
  33. 33.
    Personal Communication with Dr. Joseph C. Fogarty and Dr. Adri C.T. van DuinGoogle Scholar
  34. 34.
    Plimpton S (1995) Fast parallel algorithms for short range molecular dynamics. J Comp Phys 117(1):1–19CrossRefGoogle Scholar
  35. 35.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Bruckner R (1970) Properties and structure of vitreous silica- I. J Non-Cryst Solids 5:123–175CrossRefGoogle Scholar
  38. 38.
    Clausius R (1870) On a mechanical theorem applicable to heat. Philos Mag 40:122–127Google Scholar
  39. 39.
    Tsai DH (1979) The virial theorem and stress calculation in molecular dynamics. J Chem Phys 70:1375–1382CrossRefGoogle Scholar
  40. 40.
    Vollmayr K, Kob W, Binder K (1996) Cooling rate effects in amorphous silica: a computer simulation study. Phys Rev B 54(22):15808–15827CrossRefGoogle Scholar
  41. 41.
    Mozzi RL, Warren BE (1969) The structure of vitreous silica. J Appl Cryst 2:164172CrossRefGoogle Scholar
  42. 42.
    Vashishta P, Kalia RK, Rino JP (1990) Interaction potential for SiO2: a molecular dynamics study of structural correlations. Phys Rev B 41(7):12197–12209CrossRefGoogle Scholar
  43. 43.
    Wyckoff RWG (1963) Crystal structures: volume 1. Wiley, New YorkGoogle Scholar
  44. 44.
    Konnert JH, Karle J (1973) Computation of radial distribution functions for glassy materials. Acta Crystallogr A 29:702–710CrossRefGoogle Scholar
  45. 45.
    Da Silvaa JRG, Pinatti DG, Anderson CE, Rudee ML (1975) A refinement of the structure of vitreous silica. Phil Mag 31(3):713–717CrossRefGoogle Scholar
  46. 46.
    Tsiok OB, Brazhkin VV, Lyapin AG, Khvostantsev LG (1998) Logarithmic kinetics of the amorphous-amorphous transformations in SiO2 and GeO2 glasses under high pressure. Phys Rev Lett 80(5):999–1002CrossRefGoogle Scholar
  47. 47.
    Paramo T, East A, Garzon D, Ulmschneider MB, Bond PJ (2014) Efficient characterization of protein cavities within molecular simulation trajectories: trj_cavity. J Chem Theory Comput 10:2151–2164CrossRefGoogle Scholar
  48. 48.
    Susman S, Volin KJ, Price DL, Grimsditch M, Rino JP, Kalia RK, Vashishta P (1991) Intermediate-range order in permanently densified vitreous SiO2: a neutron-diffraction and molecular-dynamics study. Phys Rev B 43(1):1194–1197CrossRefGoogle Scholar
  49. 49.
    Tilocca A, de Leeuw NH, Cormack AN (2006) Shell-model molecular dynamics calculations of modified silicate glasses. Phys Rev B 73:104209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sanjib C. Chowdhury
    • 1
  • Bazle Z. (Gama) Haque
    • 1
    • 4
  • John W. GillespieJr.
    • 1
    • 2
    • 3
    • 4
  1. 1.Center for Composite Materials (UD-CCM)University of DelawareNewarkUSA
  2. 2.Department of Materials Science & EngineeringUniversity of DelawareNewarkUSA
  3. 3.Department of Civil & Environmental EngineeringUniversity of DelawareNewarkUSA
  4. 4.Department of Mechanical EngineeringUniversity of DelawareNewarkUSA

Personalised recommendations