Advertisement

Journal of Materials Science

, Volume 51, Issue 21, pp 9638–9648 | Cite as

High-resolution imaging of the nanostructured surface of polyacrylonitrile-based fibers

  • Christina Kunzmann
  • Judith Moosburger-Will
  • Siegfried Horn
Original Paper

Abstract

In our study, we present atomic force microscopy (AFM) investigations of the surface of Polyacrylonitrile-based carbon fibers utilizing two different AFM probes, a standard tip as used in literature up to now and a recently made available super sharp tip. Using the super sharp tip, we identified so far not reported pore-like nanostructures distributed homogeneously over the surface of the fibers. We show that such nanopores are already present on the surface of the corresponding precursor fiber, indicating that these structures are characteristic for the fiber along the production process. To investigate a possible correlation between the surface structures and the mechanical properties of carbon fibers, we further analyzed the surface of various carbon fibers showing different tensile strengths. All investigated fibers show characteristic nanoporous surface structures and a correlation was found between the Nanopore size and shape and the mechanical properties. The effective nanopore area and the aspect ratio of the nanopores decrease with increasing tensile strength of the fibers. In addition, the nanoroughness of the fiber surface is correlated to the nanopore size and also decreases with increasing tensile strength.

Keywords

Atomic Force Microscopy Carbon Fiber Atomic Force Microscopy Probe Precursor Fiber Pore Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR (2014) Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed 53(21):5262–5298CrossRefGoogle Scholar
  2. 2.
    Chand S (2000) Review: carbon fibers for composites. J Mater Sci 35(6):1303–1313. doi: 10.1023/A:1004780301489 CrossRefGoogle Scholar
  3. 3.
    Huang X (2009) Fabrication and properties of carbon fibers. Materials 2(4):2369–2403CrossRefGoogle Scholar
  4. 4.
    Fitzer E (1989) Pan-based carbon fibers—present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27(5):621–645CrossRefGoogle Scholar
  5. 5.
    Mark HF (2007) Encyclopedia of polymer science and technology, 3rd edn. Wiley-Interscience, HobokenGoogle Scholar
  6. 6.
    Morita K, Murata Y, Ishitani A, Murayama K, Ono T, Nakajima A (1986) Characterization of commercially available PAN (polyacrylonitri1e)-based carbon fibers. Pure Appl Chem 58(3):455–468CrossRefGoogle Scholar
  7. 7.
    Damodaran S, Desai P, Abhiraman AS (2008) Chemical and physical aspects of the formation of carbon fibres from PAN-based precursors. J Text Inst 81(4):384–420CrossRefGoogle Scholar
  8. 8.
    Paul DR (1968) A study of spinnability in the wet-spinning of acrylic fibers. J Appl Polym Sci 12(10):2273–2298CrossRefGoogle Scholar
  9. 9.
    Cahn JW (1965) Phase separation by spinodal decomposition in isotropic systems. J Chem Phys 42(1):93CrossRefGoogle Scholar
  10. 10.
    Cohen C, Tanny GB, Prager S (1979) Diffusion-controlled formation of porous structures in ternary polymer systems. J Polym Sci Polym Phys 17(3):477–489CrossRefGoogle Scholar
  11. 11.
    Arbab S, Noorpanah P, Mohammadi N, Soleimani M (2008) Designing index of void structure and tensile properties in wet‐spun polyacrylonitrile (PAN) fiber. I. Effect of dope polymer or nonsolvent concentration. J Appl Polym Sci 109(6):3461–3469CrossRefGoogle Scholar
  12. 12.
    Weisser P, Barbier G, Richard C, Drean J (2015) Characterization of the coagulation process: wet-spinning tool development and void fraction evaluation. Text Res J. doi: 10.1177/0040517515606355 Google Scholar
  13. 13.
    Baojun Q, Ding P, Zhenqiou W (1986) The mechanism and characterstics of dry-jet wet-spinning of acrylic fibers. Adv Polym Technol 6(4):509–529CrossRefGoogle Scholar
  14. 14.
    van de Witte P, Dijkstra PJ, van den Berg J, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1–2):1–31CrossRefGoogle Scholar
  15. 15.
    Knudsen JP (1963) The influence of coagulation variables on the structure and physical properties of an acrylic fiber. Text Res J 33(1):13–20CrossRefGoogle Scholar
  16. 16.
    Gupta AK, Paliwal DK, Bajaj P (1991) Acrylic precursors for carbon fibers. Polym Revs 31(1):1–89CrossRefGoogle Scholar
  17. 17.
    Bajaj P, Munuktla Surya Kumari, Vaidya AA, Gupta DC (1989) Influence of spinning dope additives and spin bath temperature on the structure and physical properties of acrylic fibers. Text Res J 59(10):601–608CrossRefGoogle Scholar
  18. 18.
    Fitzer E, Frohs W (1990) Modern carbon fibres from polyacrylonitrile (PAN)-polyheteroaromatics with preferred orientation. Chem Eng Technol 13(1):41–49CrossRefGoogle Scholar
  19. 19.
    Wilms C, Seide GH, Gries T (2013) The relationship between process technology, structure development and fibre properties in modern carbon fibre production. Chem Eng Trans 32:1609–1614Google Scholar
  20. 20.
    Dilsiz N, Wightman J (1999) Surface analysis of unsized and sized carbon fibers. Carbon 37(7):1105–1114CrossRefGoogle Scholar
  21. 21.
    Song W, Gu A, Liang G, Yuan L (2011) Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites. Appl Surf Sci 257(9):4069–4074CrossRefGoogle Scholar
  22. 22.
    Johnson DJ, Tyson CN (1969) The fine structure of graphitized fibres. J Phys D Appl Phys 2(6):787–795CrossRefGoogle Scholar
  23. 23.
    Bashir Z (1994) Co-crystallization of solvents with polymers: the x-ray diffraction behavior of solvent-containing and solvent-free polyacrylonitrile. J Polym Sci Polym Phys 32(6):1115–1128CrossRefGoogle Scholar
  24. 24.
    Warner SB, Uhlmann DR (1979) Oxidative stablzation of acrylic fibres. J Mater Sci 14(8):1893–1900. doi: 10.1007/BF00553962 CrossRefGoogle Scholar
  25. 25.
    Badami DV, Joiner JC, Jones GA (1967) Microstructure of high strength, high modulus carbon fibres. Nature 215(5099):386–387CrossRefGoogle Scholar
  26. 26.
    Bennett SC, Johnson DJ (1979) Electron-microscope studies of structural heterogeneity in pan-based carbon fibres. Carbon 17(1):25–39CrossRefGoogle Scholar
  27. 27.
    Johnson DJ, Frank C (1980) Recent Advances in Studies of Carbon Fibre Structure [and Discussion]. Philos Trans R Soc A Math Phys Eng Sci 294(1411):443–449CrossRefGoogle Scholar
  28. 28.
    Johnson DJ (1987) Structure-property relationships in carbon fibres. J Phys D Appl Phys 20(3):286–291CrossRefGoogle Scholar
  29. 29.
    Brasquet C, Rousseau B, Estrade-Szwarckopf H, Le Cloirec P (2000) Observation of activated carbon fibres with SEM and AFM correlation with adsorption data in aqueous solution. Carbon 38(3):407–422CrossRefGoogle Scholar
  30. 30.
    Qian X, Zou R, OuYang Q, Wang X, Zhang Y (2015) Surface structural evolvement in the conversion of polyacrylonitrile precursors to carbon fibers. Appl Surf Sci 327:246–252CrossRefGoogle Scholar
  31. 31.
    Yao L, Li M, Wu Q, Dai Z, Gu Y, Li Y, Zhang Z (2012) Comparison of sizing effect of T700 grade carbon fiber on interfacial properties of fiber/BMI and fiber/epoxy. Appl Surf Sci 263:326–333CrossRefGoogle Scholar
  32. 32.
    Donnet JB, Qin RY (1993) Study of carbon fiber surfaces by scanning tunneling microscopy, Part II-PAN-based high strength carbon fibers. Carbon 31(1):7–12CrossRefGoogle Scholar
  33. 33.
    Shi D, Liu N, Yang H, Gao J, Jiang Y, Pang S, Wu X, Ji Z (1997) Scanning tunneling microscope study of polyacrylonitrile-based carbon fibers. J Mater Res 12(10):2543–2547CrossRefGoogle Scholar
  34. 34.
    Yoon S, Korai Y, Mochia I, Yokogawa K, Fukuyama S, Yoshimura M (1996) Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch. Carbon 34(1):83–88CrossRefGoogle Scholar
  35. 35.
    Magonov SN (1993) Surface characterization of materials at ambient conditions by scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Appl Spec Rev 28(1–2):1–121CrossRefGoogle Scholar
  36. 36.
    Li W, Long D, Miyawaki J, Qiao W, Ling L, Mochida I, Yoon S (2012) Structural features of polyacrylonitrile-based carbon fibers. J Mater Sci 47(2):919–928. doi: 10.4236/aces.2012.22032 CrossRefGoogle Scholar
  37. 37.
    Magonov SN, Bar G, Cantow H, Bauer H, Muueller I, Schwoerer M (1991) Atomic force microscopy on polymers and polymer related compounds. Polym Bull 26(2):223–230CrossRefGoogle Scholar
  38. 38.
    Binnig G, Gerber C, Stoll E, Albrecht TR, Quate CF (1987) Atomic resolution with atomic force microscope. Europhys Lett 3(12):1281–1286CrossRefGoogle Scholar
  39. 39.
    Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290(1–2):L688–L692Google Scholar
  40. 40.
    Paulo ÁS, García R (2002) Unifying theory of tapping-mode atomic-force microscopy. Phys Rev B 66(4):041406CrossRefGoogle Scholar
  41. 41.
    Keller DJ, Chih-Chung C (1992) Imaging steep, high structures by scanning force microscopy with electron beam deposited tips. Surf Sci 268(1–3):333–339CrossRefGoogle Scholar
  42. 42.
    Bustamante C, Keller D, Yang G (1993) Scanning force microscopy of nucleic acids and nucleoprotein assemblies. Curr Opin Struc Biol 3(3):363–372CrossRefGoogle Scholar
  43. 43.
    Engel A, Schoenenberger C, Müller DJ (1997) High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr Opin Struc Biol 7(2):279–284CrossRefGoogle Scholar
  44. 44.
    Shao Z, Mou J, Czajkowsky DM, Yang J, Yuan J (1996) Biological atomic force microscopy: what is achieved and what is needed. Adv Phys 45(1):1–86CrossRefGoogle Scholar
  45. 45.
    Toray (T300) Product literatureGoogle Scholar
  46. 46.
    Toray (T700) Product literatureGoogle Scholar
  47. 47.
    Toray (M40) Product literatureGoogle Scholar
  48. 48.
    Cooper GA, Mayer RM (1971) The strength of carbon fibres. J Mater Sci 6(1):60–67. doi:  10.1007/BF00550292 CrossRefGoogle Scholar
  49. 49.
    Edie DD (1998) The effect of processing on the structure and properties of carbon fibers. Carbon 36(4):345–362CrossRefGoogle Scholar
  50. 50.
    Liu F, Wang H, Xue L, Fan L, Zhu Z (2008) Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization. J Mater Sci 43(12):4316–4322. doi:  10.1007/s10853-008-2633-y CrossRefGoogle Scholar
  51. 51.
    Johnson JW, Thorne DJ (1969) Effect of internal polymer flaws on strength of carbon fibres prepared from an acrylic precursor. Carbon 7(6):659–661.CrossRefGoogle Scholar
  52. 52.
    Khulbe KC, Feng CY, Matsuura T (2008) Synthetic polymeric membranes. Springer, BerlinGoogle Scholar
  53. 53.
    Bowen W, Hilal N, Lovitt RW, Williams PM (1996) Atomic force microscope studies of membranes: surface pore structures of Diaflo ultrafiltration membranes. J Colloid Interf Sci 180(2):350–359CrossRefGoogle Scholar
  54. 54.
    Sun J, Hu Y, Frieze WE, Chen W, Gidley DW (2003) How pore size and surface roughness affect diffusion barrier continuity on porous low-k films. J Electrochem Soc 150(5):F97CrossRefGoogle Scholar
  55. 55.
    Souhaimi MK, Matsuura T (2011) Membrane distillation: principles and applications, 1st edn. Elsevier professional, BostonGoogle Scholar
  56. 56.
    Jäger J, Moosburger-Will J, Horn S (2013) Determination of nano-roughness of carbon fibers by atomic force microscopy. J Mater Sci 48(19):6803–6810. doi: 10.1007/s10853-013-7485-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Experimental Physics II, Institute of PhysicsUniversity of AugsburgAugsburgGermany
  2. 2.Institute of Materials Resource ManagementUniversity of AugsburgAugsburgGermany

Personalised recommendations