Journal of Materials Science

, Volume 51, Issue 20, pp 9239–9252 | Cite as

Characterization of an oxalate-phosphate-amine metal–organic framework (OPA-MOF) exhibiting properties suited for innovative applications in agriculture

  • Manuela Anstoetz
  • Neeraj Sharma
  • Malcolm Clark
  • Lachlan H. Yee
Original Paper

Abstract

Targeting an innovative application for metal–organic frameworks (MOFs) in agriculture, a hydrothermal method is employed to synthesize two compounds of urea-templated iron-based oxalate-phosphate-amine MOFs, OPA-MOF (I) and (II). The compounds, forming powders of highly crystalline masses of platy morphology, crystallize in the orthorhombic system with space group Pccm and subtly different unit cells: a = 10.150(2), b = 11.770(2) and c = 12.510(3) Å for compound (I) and a = 10.170(2), b = 11.886(2) and c = 12.533(3) Å for compound (II). Both compounds are of elemental composition C8Fe8N16O52P8 and consist entirely of the plant nutrient elements P, N and Fe, organized by corner-shared FeO6 and PO4 units, which connect to oxalate units in a and c directions to form the framework. The N-containing guest species from the decomposed urea template were found to prefer sites close to the edges of the large (~10 × 8.6 Å) framework pores along the c axis, leaving central pore areas empty. Identification of the guest was challenging due to potential H2O/NH4 mixing from the hydrothermal conditions, in addition to rotational and occupational disorder. While both compounds have suitable N and P contents for their application as fertilizers, compound (I) displays the better oxalate solubility required to initiate bacterial mineralization of the structural oxalate, resulting in structural collapse. This is the proposed release mechanism for the plant nutrients in soil. Compound (II) has unsuitably high oxalate solubility, potentially caused by a higher connectivity of larger macroscopic pores to the surface, which was visible in SEM, i.e., a macroscopic effect rather than a crystallographic effect. The utilization of such MOFs in agriculture might help to address reduced soil fertility from acidification, and provide a pathway for more efficient control of nutrient supply than conventional fertilizers.

Supplementary material

10853_2016_171_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2019 kb)
10853_2016_171_MOESM2_ESM.pdf (86 kb)
Supplementary material 2 (PDF 86 kb)
10853_2016_171_MOESM3_ESM.cif (11 kb)
Supplementary material 3 (CIF 11 kb)

References

  1. 1.
    Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214. doi:10.1039/b618320b CrossRefGoogle Scholar
  2. 2.
    Gaab M, Trukhan N, Maurer S, Gummaraju R, Müller U (2012) The progression of Al-based metal-organic frameworks—from academic research to industrial production and applications. Microporous Mesoporous Mater 157:131–136. doi:10.1016/j.micromeso.2011.08.016 CrossRefGoogle Scholar
  3. 3.
    Janiak C (2003) Engineering coordination polymers towards applications. Dalton Transactions 14:2781–2804CrossRefGoogle Scholar
  4. 4.
    Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J (2006) Metal-organic frameworks-prospective industrial applications. J Mater Chem 16:626–636CrossRefGoogle Scholar
  5. 5.
    McKinlay AC, Morris RE, Horcajada P et al (2010) BioMOFs: metal-organic frameworks for biological and medical applications. Angewandte Chemie Int Edition 49:6260–6266CrossRefGoogle Scholar
  6. 6.
    Farha OK, Hupp JT (2010) Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc Chem Res 43:1166–1175. doi:10.1021/ar1000617 CrossRefGoogle Scholar
  7. 7.
    Farha OK, Özgür Yazaydin A, Eryazici I et al (2010) De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948. doi:10.1038/nchem.834 CrossRefGoogle Scholar
  8. 8.
    Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1:695–704CrossRefGoogle Scholar
  9. 9.
    Huang T, Vanchura BA, Shan Y, Huang SD (2007) Na(H3NCH2CH2NH3)0.5[Co(C2O4)(HPO4)]: a novel phosphoxalate open-framework compound incorporating both an alkali cation and an organic template in the structural tunnels. J Solid State Chem 180:2110–2115CrossRefGoogle Scholar
  10. 10.
    Bagtache R, Abdmeziem K, Boutamine S, Meklati M, Vittori O (2009) Effect of the nature of the organic template and metal cation on the phase composition of metal-phosphates. Synth React Inorg Met Org Nano Met Chem 39:467–474Google Scholar
  11. 11.
    Kizewski FR, Boyle P, Hesterberg D, Martin JD (2010) Mixed anion (Phosphate/Oxalate) bonding to iron(III) materials. J Am Chem Soc 132:2301–2308. doi:10.1021/ja908807b CrossRefGoogle Scholar
  12. 12.
    Rajić N, Stojaković D, Hanžel D, Kaučič V (2004) The structure directing role of 1,3-diaminopropane in the hydrothermal synthesis of iron(III) phosphate. J Serb Chem Soc 69:179–185CrossRefGoogle Scholar
  13. 13.
    Rao CNR (2001) Basic building units, self-assembly and crystallization in the formation of complex inorganic open architectures. J Chem Sci 113:363–374. doi:10.1007/BF02708777 CrossRefGoogle Scholar
  14. 14.
    Natarajan S, Mandal S, Mahata P et al (2006) The use of hydrothermal methods in the synthesis of novel open-framework materials. J Chem Sci 118:525–536CrossRefGoogle Scholar
  15. 15.
    O’Keeffe M (2010) Aspects of crystal structure prediction: some successes and some difficulties. Phys Chem Chem Phys 12:8580–8583CrossRefGoogle Scholar
  16. 16.
    O’Keeffe M, Yaghi OM (2010) 2010 American Crystallographic Association. Annual Meeting American Crystallographic Association, ChicagoGoogle Scholar
  17. 17.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714CrossRefGoogle Scholar
  18. 18.
    Tranchemontagne DJ, Ni Z, O’Keeffe M, Yaghi OM (2008) Reticular chemistry of metal-organic polyhedra. Angewandte Chemie Int Edition 47:5136–5147CrossRefGoogle Scholar
  19. 19.
    Lii KH, Huang YF, Zima V et al (1998) Syntheses and structures of organically templated iron phosphates. Chem Mater 10:2599–2609CrossRefGoogle Scholar
  20. 20.
    Lethbridge ZAD, Hillier AD, Cywinski R, Lightfoot P (2000) Mixed inorganic-organic anion frameworks: synthesis and characterisation of Mn-4(PO4)(2)(C2O4)(H2O)(2) and H3N(CH2)(3)NH3 Mn-2(HPO4)(2)(C2O4)(H2O)(2). J Chem Soc Dalton Trans 10:1595–1599CrossRefGoogle Scholar
  21. 21.
    Choudhury A, Natarajan S, Rao CNR (1999) Hybrid framework iron(II) phosphate-oxalates. J Solid State Chem 146:538–545CrossRefGoogle Scholar
  22. 22.
    Choudhury A, Natarajan S, Rao CNR (1999) A hybrid open-framework iron phosphate-oxalate with a large unidimensional channel, showing reversible hydration. Chem Mater 11:2316–2318CrossRefGoogle Scholar
  23. 23.
    Choudhury A, Natarajan S, Rao CNR (2000) Hybrid open-framework iron phosphate-oxalates demonstrating a dual role of the oxalate unit. Chem Eur J 6:1168–1175CrossRefGoogle Scholar
  24. 24.
    Rao CNR, Natarajan S, Vaidhyanathan R (2004) Metal carboxylates with open architectures. Angew Chem Int Edition 43:1466–1496. doi:10.1002/anie.200300588 CrossRefGoogle Scholar
  25. 25.
    Lethbridge ZAD, Tiwary SK, Harrison A, Lightfoot P (2001) Synthesis, structural relationships and magnetic properties of new amine-templated manganese(II) phosphate oxalate framework materials. J Chem Soc Dalton Trans 12:1904–1910CrossRefGoogle Scholar
  26. 26.
    Ma FX, Meng FX, Liu K, Pang HJ, Shi DM, Chen YG (2007) Hydrothermal synthesis, crystal structure and magnetic property of oxalate-bridged iron 1D chain coordination polymer. Trans Met Chem 32:981–984. doi:10.1007/s11243-007-0264-9 CrossRefGoogle Scholar
  27. 27.
    Neeraj S, Natarajan S, Rao CNR (2001) A zinc phosphate oxalate with phosphate layers pillared by the oxalate units. J Chem Soc Dalton Trans 3:289–291CrossRefGoogle Scholar
  28. 28.
    Vaidhyanathan R, Natarajan S, Rao CNR (2001) Synthesis of a hierarchy of zinc oxalate structures from amine oxalates. J R Chem Soc Dalton Trans 5:699–706CrossRefGoogle Scholar
  29. 29.
    Yang X, Li J, Hou Y, Shi S, Shan Y (2008) K2Fe(C2O4)(HPO4)(OH2) H2O: a layered oxalatophosphate hybrid material. Inorg Chim Acta 361:1510–1514CrossRefGoogle Scholar
  30. 30.
    Rajić N, Logar NZ, Mali G, Stojaković D, Kaučič V (2006) On a possible role of dicarboxylate ions in the formation of open-framework metallophosphates. Croat Chem Acta 79:187–193Google Scholar
  31. 31.
    Rajic N, Stojakovic D, Hanzel D, Zabukovec Logar N, Kaucic V (2002) Preparation and characterization of iron(III) phosphate–oxalate using 1,2-diaminopropane as the structure-directing agent. Microporous Mesoporous Mater 55:313CrossRefGoogle Scholar
  32. 32.
    Colombo C, Palumbo G, He J-Z, Pinton R, Cesco S (2014) Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soils Sediments 14:538–548. doi:10.1007/s11368-013-0814-z CrossRefGoogle Scholar
  33. 33.
    Graustein WC, Cromack K, Sollins P (1977) Calcium-oxalate—occurrence in soils and effect on nutrient and geochemical cycles. Science 198:1252–1254. doi:10.1126/science.198.4323.1252 CrossRefGoogle Scholar
  34. 34.
    Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  35. 35.
    Cailleau G, Braissant O, Verrecchia EP (2004) Biomineralisation in plants as a long-term carbon sink. Naturwissenschaften 91:191–194. doi:10.1007/s00114-004-0512-1 CrossRefGoogle Scholar
  36. 36.
    Cailleau G, Braissant O, Verrecchia EP (2011) Turning sunlight into stone: the oxalate-carbonate pathway in a tropical tree ecosystem. Biogeosciences 8:1755–1767CrossRefGoogle Scholar
  37. 37.
    Cailleau G, Mota M, Bindschedler S, Junier P, Verrecchia EP (2014) Detection of active oxalate-carbonate pathway ecosystems in the Amazon Basin: global implications of a natural potential C sink. Catena 116:132–141CrossRefGoogle Scholar
  38. 38.
    Sahin N (2004) Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils. Naturwissenschaften 91:498–502CrossRefGoogle Scholar
  39. 39.
    Sahin N, Goekler I, Tamer AÜ (2002) Isolation, characterization and numerical taxonomy of novel oxalate-oxidizing bacteria. J Microbiol 40:109–118Google Scholar
  40. 40.
    Subrt J, Stengl V, Bakardjieva S, Szatmary L (2006) Synthesis of spherical metal oxide particles using homogeneous precipitation of aqueous solutions of metal sulfates with urea. Powder Technol 169:33–40. doi:10.1016/j.powtec.2006.07.009 CrossRefGoogle Scholar
  41. 41.
    Soler-Iltia GJDAA, Jobbagy M, Candal RJ, Regazzoni AE, Blesa MA (1998) Synthesis of metal oxide particles from aqueous media: the homogeneous alkalinization method. J Dispers Sci Technol 19:207–228CrossRefGoogle Scholar
  42. 42.
    Alexandrova AN, Jorgensen WL (2007) Why urea eliminates ammonia rather than hydrolyzes in aqueous solution. J Phys Chem B 111:720–730. doi:10.1021/jp066478s CrossRefGoogle Scholar
  43. 43.
    Warner RC (1942) The kinetics of the hydrolysis of urea and of arginine. J Biol Chem 142:705–723Google Scholar
  44. 44.
    Shaw WHR, Bordeaux JJ (1955) The decomposition of urea in aqueous media. J Am Chem Soc 77:4729–4733. doi:10.1021/ja01623a011 CrossRefGoogle Scholar
  45. 45.
    Maspoch D, Ruiz-Molina D, Veciana J (2007) Old materials with new tricks: multifunctional open-framework materials. Chem Soc Rev 36:770–818. doi:10.1039/b501600m CrossRefGoogle Scholar
  46. 46.
    Anstoetz M (2010) Environmental science and management. Southern Cross University, LismoreGoogle Scholar
  47. 47.
    Anstoetz M, Clark M, Yee L (2016) Resolving topography of an electron beam-sensitive oxalate-phosphate-amine metal–organic framework (OPA-MOF). J Mater Sci 51:1562–1571. doi:10.1007/s10853-015-9478-y CrossRefGoogle Scholar
  48. 48.
    Wallwork KS, Kennedy BJ, Wang D (2007) The high resolution powder diffraction beamline for the Australian synchrotron. AIP Conf Proc 879:879–882. doi:10.1063/1.2436201 CrossRefGoogle Scholar
  49. 49.
    Kabsch W (2010) XDS. Acta Crystallogr Sect D: Biol Crystallogr 66:125–132. doi:10.1107/S0907444909047337 CrossRefGoogle Scholar
  50. 50.
    McPhillips TM, McPhillips SE, Chiu HJ et al (2002) Blu-Ice and the distributed control system: software for data acquisition and instrument control at macromolecular crystallography beamlines. J Synchrotron Radiat 9:401–406. doi:10.1107/S0909049502015170 CrossRefGoogle Scholar
  51. 51.
    Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838CrossRefGoogle Scholar
  52. 52.
    Sheldrick GM (2007) A short history of SHELX. Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  53. 53.
    Lewis DW, McConchie DM (2012) Analytical sedimentology. Springer Science and Business Media, DordrechtGoogle Scholar
  54. 54.
    Huang C-Y, Wang S-L, Lii K-H (1998) Novel mixed-valence tetranuclear iron-oxygen clusters in the organically templated iron phosphate [H3N(CH2)2NH3]2Fe4O(PO4)4 H2O. J Porous Mater 5:147–152CrossRefGoogle Scholar
  55. 55.
    Zima V, Lii KH, Nguyen N, Ducouret A (1998) Two new mixed-valence iron phosphates templated by piperazine: (C4H12N2) (Fe-4(OH))2∙(HPO4)5 and (C4H11N2)(0.5) (Fe-3(HPO4))2(PO4)(H2O). Chem Mater 10:1914–1920CrossRefGoogle Scholar
  56. 56.
    Jiang YC, Wang SL, Lii KH, Nguyen N, Ducouret A (2003) Synthesis, crystal structure, magnetic susceptibility, and Mössbauer spectroscopy of a mixed-valence organic-inorganic hybrid compound: (H3DETA)[Fe3(C2O4) 2(HPO4)2(PO4)] (DETA = diethylenetriamine). Chem Mater 15:1633–1638. doi:10.1021/cm021701t CrossRefGoogle Scholar
  57. 57.
    DeBord JRD, Reiff WM, Warren CJ, Haushalter RC, Zubieta J (1997) A 3-D organically templated mixed valence (Fe2+/Fe3+) iron phosphate with oxide-centered Fe4O(PO4)4 cubes: hydrothermal synthesis, crystal structure, magnetic susceptibility, and Mossbauer spectroscopy of [H3NCH2CH2NH3]2 (Fe4O(PO4))4∙H2O. Chem Mater 9:1994–1998CrossRefGoogle Scholar
  58. 58.
    Abu-Shandi K, Winkler H, Wu B, Janiak C (2003) Open-framework iron phosphates: syntheses, structures, sorption studies and oxidation catalysis. Chryst Eng Comm 5:180–189CrossRefGoogle Scholar
  59. 59.
    Ewing SJ, Vaqueiro P (2015) Structural complexity in indium selenides prepared using bicyclic amines as structure-directing agents. Dalton Trans 44:1592–1600. doi:10.1039/c4dt02819h CrossRefGoogle Scholar
  60. 60.
    Rao CNR, Choudhury A, Natarajan S, Neeraj S, Vaidhyanathan R (2001) Synthons and design in metal phosphates and oxalates with open architectures. Acta Chrystallogr Sect B Struct Sci B57:1–12CrossRefGoogle Scholar
  61. 61.
    Rao CNR, Dan M, Behera JN (2005) Chemical design of materials: a case study of inorganic open-framework materials. Pure Appl Chem 77:1655–1674. doi:10.1351/pac200577101655 CrossRefGoogle Scholar
  62. 62.
    Lethbridge ZAD, Clarkson GJ, Turner SS, Walton RI (2009) Polymorphism and variable structural dimensionality in the iron(III) phosphate oxalate system: a new polymorph of 3D [Fe2(HPO4)2(C2O4)(H2O)2]∙2H2O and the layered material [Fe2(HPO4)2(C2O4)(H2O)2]. Dalton Trans 42:9176–9182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Manuela Anstoetz
    • 1
  • Neeraj Sharma
    • 2
  • Malcolm Clark
    • 1
    • 3
  • Lachlan H. Yee
    • 1
    • 3
  1. 1.School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia
  2. 2.School of ChemistryUNSW AustraliaSydneyAustralia
  3. 3.Marine Ecology Research Centre, School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia

Personalised recommendations