Advertisement

Journal of Materials Science

, Volume 51, Issue 21, pp 9589–9601 | Cite as

Synthesis of a novel reactive compatibilizer with large surface area and the application in monomer casting nylon/polyethylene–octene elastomer blends

  • Yuexin Wang
  • Xu Liu
  • Qian Zhang
  • Qing MengEmail author
Original Paper

Abstract

Graphene oxide (GO) can be used as surfactants in numerous technological fields. For this study, functionalized GO was used as a novel reactive compatibilizer with large surface area to compatibilize immiscible polymer blends. The compatibilizer is composed of three parts with non-polar polymer chain, polar segment and GO sheet, which appears to be of more practical significance and can greatly expand the compatibilizing range. Monomer casting nylon (MC nylon)/polyethylene–octene elastomer (POE) was chosen as the immiscible polymer pairs to investigate the compatibility and comprehensive properties of the compatibilizer. With the incorporation of the novel reactive compatibilizer (GO-TEPAF-POE), the immiscible blends exhibited better compatibility and the dispersion of the minor phase (POE) is remarkably improved without obvious agglomerates. Moreover, GO-TEPAF-POE also acts as multifunctional fillers for MC nylon/POE blends, thus enhancing their mechanical properties and thermal stability. In particular, the notched impact strength values sharply increase by 84 % as opposed to the neat MC nylon. The novel compatibilizer with large surface area may broaden its potential application and fully exploits the extraordinary properties of these appealing carbon nanomaterials.

Keywords

Graphite Oxide Graphite Oxide Thermal Gravimetric Analysis Compatibilizing Effect Trimethyl Ammonium Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the financial support from the Hebei Province Applied Basic Research Foundation (14961210D) and Colleges and Universities in Hebei Province Science and Technology Research Projects (ZD20131071).

References

  1. 1.
    Yun YS, Bae YH, Kim DH, Lee JY, Chin IJ, Jin HJ (2011) Reinforcing effects of adding alkylated graphene oxide to polypropylene. Carbon 49(11):3553–3559CrossRefGoogle Scholar
  2. 2.
    Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495CrossRefGoogle Scholar
  3. 3.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRefGoogle Scholar
  4. 4.
    Soldano C, Mahmood A, Dujardin E (2010) Production properties and potential of graphene. Carbon 48(8):2127–2150CrossRefGoogle Scholar
  5. 5.
    Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRefGoogle Scholar
  6. 6.
    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRefGoogle Scholar
  7. 7.
    Cano M, Khan U, Sainsbury T, O’Neill A, Wang Z, McGovern IT et al (2013) Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 52:363–371CrossRefGoogle Scholar
  8. 8.
    Gonçalves G, Marques PAAP, Barros-Timmons A, Bdkin I, Singh MK, Emami N et al (2010) Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem 20(44):9927–9934CrossRefGoogle Scholar
  9. 9.
    Istrate OM, Paton KR, Khan U, O’Neill A, Bell AP, Coleman JN (2014) Reinforcement in melt-processed polymer–graphene composites at extremely low graphene loading level. Carbon 78:243–249CrossRefGoogle Scholar
  10. 10.
    Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43(16):6716–6723CrossRefGoogle Scholar
  11. 11.
    Fang M, Zhang Z, Li J, Zhang H, Lu H, Yang Y (2010) Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J Mater Chem 20(43):9635–9643CrossRefGoogle Scholar
  12. 12.
    Hsiao MC, Liao SH, Yen MY, Teng CC, Lee SH, Pu NW et al (2010) Preparation and properties of a graphene reinforced nanocomposite conducting plate. J Mater Chem 20(39):8496–8505CrossRefGoogle Scholar
  13. 13.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450CrossRefGoogle Scholar
  14. 14.
    Elias L, Fenouillot F, Majesté JC, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48(20):6029–6040CrossRefGoogle Scholar
  15. 15.
    Chiou KC, Chang FC (2000) Reactive compatibilization of polyamide-6 (PA 6)/polybutylene terephthalate (PBT) blends by a multifunctional epoxy resin. J Polym Sci, Part B: Polym Phys 38(1):23–33CrossRefGoogle Scholar
  16. 16.
    Jiang C, Filippi S, Magagnini P (2003) Reactive compatibilizer precursors for LDPE/PA6 blends. II: maleic anhydride grafted polyethylenes. Polymer 44(8):2411–2422CrossRefGoogle Scholar
  17. 17.
    Luzinov I, Julthongpiput D, Malz H, Pionteck J, Tsukruk VV (2000) Polystyrene layers grafted to epoxy-modified silicon surfaces. Macromolecules 33(3):1043–1048CrossRefGoogle Scholar
  18. 18.
    Su Z, Li Q, Liu Y, Hu GH, Wu C (2009) Compatibility and phase structure of binary blends of poly (lactic acid) and glycidyl methacrylate grafted poly (ethylene octane). Eur Polym J 45(8):2428–2433CrossRefGoogle Scholar
  19. 19.
    Kumar S, Satapathy BK, Maiti SN (2013) Correlation of morphological parameters and mechanical performance of polyamide-612/poly (ethylene–octene) elastomer blends. Polym Advan Technol 24(5):511–519CrossRefGoogle Scholar
  20. 20.
    Li Y, Xu J, Wei Z, Xu Y, Song P, Chen G et al (2014) Mechanical properties and nonisothermal crystallization of polyamide 6/carbon fiber composites toughened by maleated elastomers. Polym Compos 35(11):2170–2179CrossRefGoogle Scholar
  21. 21.
    Cao Y, Feng J, Wu P (2012) Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends. J Mater Chem 22(30):14997–15005CrossRefGoogle Scholar
  22. 22.
    Lin Y, Jin J, Song M (2011) Preparation and characterisation of covalent polymer functionalized graphene oxide. J Mater Chem 21(10):3455–3461CrossRefGoogle Scholar
  23. 23.
    Pan B, Zhang S, Li W, Zhao J, Liu J, Zhang Y (2012) Tribological and mechanical investigation of MC nylon reinforced by modified graphene oxide. Wear 294:395–401CrossRefGoogle Scholar
  24. 24.
    Yu ZZ, Ke YC, Ou YC, Hu GH (2000) Impact fracture morphology of nylon 6 toughened with a maleated polyethylene–octene elastomer. J Appl Polym Sci 76(8):1285–1295CrossRefGoogle Scholar
  25. 25.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRefGoogle Scholar
  26. 26.
    Liu P, Gong K, Xiao P, Xiao M (2000) Preparation and characterization of poly (vinyl acetate)-intercalated graphite oxide nanocomposite. J Mater Chem 10(4):933–935CrossRefGoogle Scholar
  27. 27.
    Song N, Yang J, Ding P, Tang S, Liu Y, Shi L (2014) Effect of covalent-functionalized graphene oxide with polymer and reactive compatibilization on thermal properties of maleic anhydride grafted polypropylene. Ind Eng Chem Res 53(51):19951–19960CrossRefGoogle Scholar
  28. 28.
    Nawaz K, Khan U, Ul-Haq N, May P, O’Neill A, Coleman JN (2012) Observation of mechanical percolation in functionalized graphene oxide/elastomer composites. Carbon 50(12):4489–4494CrossRefGoogle Scholar
  29. 29.
    Park YT, Qian Y, Chan C, Suh T, Nejhad MG, Macosko CW et al (2015) Epoxy toughening with low graphene loading. Adv Funct Mater 25(4):575–585CrossRefGoogle Scholar
  30. 30.
    Yang Z, Zheng Q, Qiu H, Li J, Yang J (2015) A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst. Carbon 30(1):41–47CrossRefGoogle Scholar
  31. 31.
    He X, Tang T, Liu F, Tang N, Li X, Du Y (2015) Photochemical doping of graphene oxide thin film with nitrogen for photoconductivity enhancement. Carbon 94:1037–1043CrossRefGoogle Scholar
  32. 32.
    Kumar P, Shahzad F, Yu S, Hong SM, Kim YH, Koo CM (2015) Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94:494–500CrossRefGoogle Scholar
  33. 33.
    Chiu HT, Hsiao YK (2006) Compatibilization of poly (ethylene terephthalate)/polypropylene blends with maleic anhydride grafted polyethylene-octene elastomer. J Polym Res 13(2):153–160CrossRefGoogle Scholar
  34. 34.
    Morimune S, Kotera M, Nishino T, Goto T (2014) Uniaxial drawing of poly(vinyl alcohol)/graphene oxide nanocomposites. Carbon 70:38–45CrossRefGoogle Scholar
  35. 35.
    Xiaoyan M, Guozheng L, Haijun L, Hailin L, Yun H (2005) Novel intercalated nanocomposites of polypropylene, organic rectorite, and poly (ethylene octene) elastomer: morphology and mechanical properties. J Appl Polym Sci 97(5):1907–1914CrossRefGoogle Scholar
  36. 36.
    Mishra JK, Chang YW, Lee BC, Ryu SH (2008) Mechanical properties and heat shrinkability of electron beam crosslinked polyethylene-octene copolymer. Radiat Phys and Chem 77(5):675–679CrossRefGoogle Scholar
  37. 37.
    Remyamol T, John H, Gopinath P (2013) Synthesis and nonlinear optical properties of reduced graphene oxide covalently functionalized with polyaniline. Carbon 59:308–314CrossRefGoogle Scholar
  38. 38.
    Wang A, Long L, Zhao W, Song Y, Humphrey MG, Cifuentes MP et al (2013) Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins. Carbon 53:327–338CrossRefGoogle Scholar
  39. 39.
    Hansen CM (1969) The universality of the solubility parameter. Ind Eng Chem Prod Res Dev 8(1):2–11CrossRefGoogle Scholar
  40. 40.
    Shaw MT (1974) Studies of polymer-polymer solubility using a two-dimensional solubility parameter approach. J Appl Polym Sci 18(2):449–472CrossRefGoogle Scholar
  41. 41.
    Haggenmueller R, Fischer JE, Winey KI (2006) Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules 39(8):2964–2971CrossRefGoogle Scholar
  42. 42.
    Risch BG, Wilkes GL, Warakomski JM (1993) Crystallization kinetics and morphological features of star-branched nylon-6: effect of branch-point functionality. Polymer 34(11):2330–2343CrossRefGoogle Scholar
  43. 43.
    Fornes TD, Paul DR (2003) Crystallization behavior of nylon 6 nanocomposites. Polymer 44(14):3945–3961CrossRefGoogle Scholar
  44. 44.
    Wang Y, Liu S, Zhang Q, Meng Q (2015) In situ polymerization to prepare graphene-toughened monomer cast nylon composites. J Mater Sci 50(19):6291–6301. doi: 10.1007/s10853-015-9165-z CrossRefGoogle Scholar
  45. 45.
    Abdal-hay A, Hamdy AS, Khalil KA (2015) Fabrication of durable high performance hybrid nanofiber scaffolds for bone tissue regeneration using a novel, simple in situ deposition approach of polyvinyl alcohol on electrospun nylon 6 nanofibers. Mater Lett 147:25–28CrossRefGoogle Scholar
  46. 46.
    Giller CB, Chase DB, Rabolt JF, Snively CM (2010) Effect of solvent evaporation rate on the crystalline state of electrospun nylon 6. Polymer 51(18):4225–4230CrossRefGoogle Scholar
  47. 47.
    Maiti SN (2015) Mechanical, morphological, and thermal properties of nanotalc reinforced PA6/SEBS-g-MA composites. J Appl Polym Sci 132(7):41381(1–10)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations