Journal of Materials Science

, Volume 51, Issue 19, pp 8824–8844 | Cite as

In situ monitoring and ex situ TEM analyses of spinel (MgAl\(_2\)O\(_4\)) growth between (111)-oriented periclase (MgO) substrates and Al\(_2\)O\(_3\) thin films

  • L. C. GötzeEmail author
  • R. Milke
  • I. Zizak
  • R. Wirth
Original Paper


We investigated the temperature-dependent onset and subsequent reaction kinetics of spinel (MgAl\(_2\)O\(_4\)) interlayer growth in situ at T = 800–1000 \(^{\circ }\)C in air by means of energy-dispersive as well as wavelength-dispersive synchrotron X-ray diffraction. We observed growth using a diffusion–reaction couple setup in which (111)-oriented periclase (MgO) single-crystal substrates reacted with initially amorphous Al\(_2\)O\(_3\) thin films deposited via pulsed laser ablation. Microstructures and microtextures of the nanoscale reaction bands were analyzed ex situ using focused ion beam (FIB)-assisted transmission electron microscopy (TEM). Reaction bands grew topotactically into the substrates with the orientation relation (111) periclase || (111) spinel and 〈110〉 periclase || 〈110〉 spinel. We inferred temperature-dependent diffusion-controlled, mixed, and interface-controlled reaction kinetics from the increase of the integral intensity of the 111 spinel reflection during the in situ experiments. In case spinel formed, a porous layer at the periclase/spinel interface was found using TEM, displaying the negative reaction volume at this phase boundary. Results are compared with complementary experiments in which spinel growth was monitored using (0001)-oriented corundum (\(\upalpha \)-Al\(_2\)O\(_3\), sapphire) substrates that reacted with MgO thin films [1]. The onset of spinel growth was observed at lower temperatures using periclase substrates, and an offset of about 100 K resulted in similar reaction kinetics. The positive reaction volume at the corundum/spinel interface was displayed by bend contours in TEM micrographs. Combined results suggest that the negative reaction volume at the periclase/spinel phase boundary has a crucial effect on the onset of spinel growth and subsequent reaction kinetics.


Reactant Layer Reaction Band Spinel Layer HAADF Image Periclase Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



R. Dohmen from the Ruhr University Bochum helped with the ablation of thin films via PLD. The EDDI beamline scientists M. Klaus and C. Genzel are thanked for assistance during beamtime, and R. Gunder is acknowledged for help during the in situ experiments. A. Schreiber and S. Gehrmann from the GFZ are acknowledged for the FIB extraction of TEM foils and substrate preparation, respectively. This study was funded by the German Research Foundation (grant number MI 1205/4-2) in the framework of the German research group FOR 741 ’Nanoscale Processes and Geomaterials Properties.’


This study was funded by the German Research Foundation (grant number MI 1205/4-2).

Compliance with ethical standards

Conflict of interest

The authors declare that we have no conflict of interest.


  1. 1.
    Götze LC, Abart R, Milke R, Schorr S, Zizak I, Dohmen R, Wirth R (2014) Growth of magnesio-aluminate spinel in thin-film geometry: in situ monitoring using synchrotron X-ray diffraction and thermodynamic model. Phys Chem Minerals. doi: 10.1007/s00269-014-0682-0
  2. 2.
    Hesse D (1987) Formation of ceramic thin films by solid-state interface reactions. J Vac Sci Technol A. doi 10(1116/1):574556Google Scholar
  3. 3.
    Li C, Han X, Cheng F, Hu Y, Chen C, Chen J (2015) Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat Commun. doi: 10.1038/ncomms8345
  4. 4.
    Best MG (2003) Igneous and metamorphic petrology. Blackwell Science Ltd, OxfordGoogle Scholar
  5. 5.
    Navias L (1961) Preparation and properties of spinel made by vapor transport and diffusion in the system MgO-Al\(_2\)O\(_3\). J Am Ceram Soc 44:434–446CrossRefGoogle Scholar
  6. 6.
    Whitney WP II, Stubican VS (1971) Interdiffusion Studies in the System MgO-Al\(_2\)O\(_3\). J Phys Chem Solids 32:305–312CrossRefGoogle Scholar
  7. 7.
    Zhang P, Debroy T, Seetharaman S (1996) Interdiffusion in the MgO-Al\(_2\)O\(_3\) spinel with or without some dopants. Metall Mater Trans 27A:2105–2114CrossRefGoogle Scholar
  8. 8.
    Watson EB, Price JD (2002) Kinetics of the reaction MgO + Al\(_2\)O\(_3\) \(\longrightarrow \) MgAl\(_2\)O\(_4\) and Al–Mg interdiffusion in spinel at 1200 to 2000\(^{\circ }\)C and 1.0 to 4.0 GPa. Geochim Cosmochim Ac. doi: 10.1016/S0016-7037(02)00827-XGoogle Scholar
  9. 9.
    Liu CM, Chen JC, Chen CJ (2005) The growth of an epitaxial Mg-Al spinel layer on sapphire by solid-state reactions. J Cryst Growth. doi: 10.1016/j.jcrysgro.2005.08.023
  10. 10.
    Götze LC, Abart R, Rybacki E, Keller LM, Petrishcheva E, Dresen G (2010) Reaction rim growth in the system MgO-Al\(_2\)O\(_3\)-SiO\(_2\) under uniaxial stress. Miner Petrol. doi: 10.1007/s00710-009-0080-3
  11. 11.
    Schmalzried H (1981) Solid state reactions. Verlag Chemie GmbH, WeinheimGoogle Scholar
  12. 12.
    Hesse D, Senz S, Scholz R, Werner P, Heydenreich J (1994) Structure and morphology of the reaction fronts during the formation of MgAl\(_2\)O\(_4\) thin films by solid state reaction between R-cut sapphire substrates and MgO films. Interface Sci 2:221–237Google Scholar
  13. 13.
    Carter RE (1961) Mechanism of solid-state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide. J Am Ceram Soc 44:116–120CrossRefGoogle Scholar
  14. 14.
    Rossi RC, Fulrath RM (1963) Epitaxial growth of spinel by reaction in the solid state. J Am Ceram Soc 46:145–149CrossRefGoogle Scholar
  15. 15.
    Keller LM, Götze LC, Rybacki E, Dresen G, Abart R (2010) Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics. Am Mineral. doi: 10.2138/am.2010.3372
  16. 16.
    Jeřábek P, Abart R, Rybacki E, Habler G (2014) Microstructure and texture evolution during growth of magnesio-aluminate spinel at corundum-periclase interfaces under uniaxial load: the effect of stress concentration on reaction progress. Am J Sci. doi: 10.2475/05.2014.02
  17. 17.
    Fisher GW (1978) Rate laws in metamorphism. Geochim Cosmochim Acta. doi: 10.1016/0016-7037(78)90292-2
  18. 18.
    Abart R, Petrishcheva E (2011) Thermodynamic model for reaction rim growth: interface reaction and diffusion control. Am J Sci. doi: 10.2475/06.2011.02
  19. 19.
    He T, Becker KD (1997) An optical in-situ study of a reacting spinel crystal. Solid State Ionics 101–103:337–342CrossRefGoogle Scholar
  20. 20.
    Kotula PG, Carter CB (1996) Interfacial control of reaction kinetics in oxides. Phys Rev Lett 77:3367–3370CrossRefGoogle Scholar
  21. 21.
    Kotula PG, Carter CB (1998) Kinetics of thin-film reactions of nickel oxide with alumina: I, (0001) and {11\(\overline{2}\)0} reaction couples. J Am Ceram Soc 81:2869–2876CrossRefGoogle Scholar
  22. 22.
    Kotula PG, Johnson MT, Carter CB (1998) Thin-film reactions. Z Phys Chem 206:73–99CrossRefGoogle Scholar
  23. 23.
    Pin S, Suardelli M, D’Acapito F, Spinolo G, Zema M, Tarantino SC, Barba L, Ghigna P (2013) Role of interfacial energy and crystallographic orientation on the mechanism of the ZnO + Al\(_2\)O\(_3\) \(\longrightarrow \) ZnAl\(_2\)O\(_4\) solid-state reaction: II. Reactivity of films deposited onto the sapphire (001) face. J Phys Chem. doi: 10.1021/jp312517w
  24. 24.
    Hazen RM (1976) Effects of temperature and pressure on the cell dimension and X-ray temperature factors of periclase. Am Mineral 61:266–271Google Scholar
  25. 25.
    Dohmen R, Becker HW, Meissner E, Etzel T, Chakraborty S (2002) Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics. Eur J Mineral 14:1155–1168CrossRefGoogle Scholar
  26. 26.
    Kotula PG, Carter CB (1995) Volume expansion and lattice rotations in solid-state reactions between oxides. Scripta Metall Mater 32:863–866CrossRefGoogle Scholar
  27. 27.
    Resel R, Tamas E, Sonderegger B, Hofbauer P, Keckes J (2003) A heating stage up to 1173 K for X-ray diffraction studies in the whole orientation space. J Appl Crystallogr. doi: 10.1107/S0021889802019568
  28. 28.
    Genzel C, Denks IA, Gibmeier J, Klaus M, Wagener G (2007) The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis. Nucl Instrum Methods A. doi: 10.1016/j.nima.2007.05.209
  29. 29.
    Helmholtz-Zentrum Berlin für Materialien und Energie (2016a) The 7T-MPW-EDDI beamline at BESSY II. J Large Scale Res Facil. doi: 10.17815/jlsrf-2-63
  30. 30.
    Erko A, Packe I, Hellwig C, Fieber-Erdmann M, Pawlizki O, Veldkamp M, Gudat W (2000) KMC-2: the new X-ray beamline at BESSY II. AIP Conference Proceedings. doi: 10.1063/1.1291824
  31. 31.
    Helmholtz-Zentrum Berlin für Materialien und Energie (2016b) KMC-2: an X-ray beamline with dedicated diffraction and XAS endstations at BESSY II. J Large Scale Res Facil. doi: 10.17815/jlsrf-2-65
  32. 32.
    Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr. doi: 10.1107/S0021889810030499
  33. 33.
    Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral. doi: 10.1127/0935-1221/2004/0016-0863
  34. 34.
    Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol. doi: 10.1016/j.chemgeo.2008.05.019
  35. 35.
    Zhou RS, Snyder RL (1991) Structures and transformation mechanisms of the \(\eta \), \(\upgamma \) and \(\theta \) transition aluminas. Acta Crystallogr B 47:617–630CrossRefGoogle Scholar
  36. 36.
    Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81:1995–2012CrossRefGoogle Scholar
  37. 37.
    Hallstedt B (1992) Thermodynamic assessment of the system MgO-Al\(_2\)O\(_3\). J Am Ceram Soc 75:1497–1507CrossRefGoogle Scholar
  38. 38.
    Navrotsky A, Wechsler BA, Geisinger K, Seifert F (1986) Thermochemistry of MgAl\(_2\)O\(_4\)-Al\(_{8/3}\)O\(_4\) defect spinels. J Am Ceram Soc 69:418–422CrossRefGoogle Scholar
  39. 39.
    Lippens BC, De Boer JH (1964) Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction. Acta Crystallogr 17:1312–1321CrossRefGoogle Scholar
  40. 40.
    Levin I, Bendersky LA, Brandon DG, Rühle M (1997) Cubic to monoclinic phase transformations in alumina. Acta Mater 45:3659–3669CrossRefGoogle Scholar
  41. 41.
    Apel D, Klaus M, Genzel C, Balzar D (2011) Rietveld refinement of energy-dispersive synchrotron measurements. Z Kristallogr. doi: 10.1524/zkri.2011.1436
  42. 42.
    Chou TC, Nieh TG (1991) Nucleation and concurrent anomalous grain growth of \(\upalpha \)-Al\(_2\)O\(_3\) during \(\upgamma \) \(\longrightarrow \) \(\upalpha \) phase transformation. J Am Ceram Soc 74:2270–2279CrossRefGoogle Scholar
  43. 43.
    Pillonnet A, Garapon C, Champeaux C, Bovier C, Brenier R, Jaffrezic H, Mugnier J (1999) Influence of oxygen pressure on structural and optical properties of Al\(_2\)O\(_3\) optical waveguides prepared by pulsed laser deposition. Appl Phys A 69:S735–S738CrossRefGoogle Scholar
  44. 44.
    Cibert C, Hidalgo H, Champeaux C, Tristant P, Tixier C, Desmaison J, Catherinot A (2008) Properties of aluminum oxide thin films deposited by pulsed laser deposition and plasma enhanced chemical vapor deposition. Thin Solid Films 516:1290–1296CrossRefGoogle Scholar
  45. 45.
    Shin J, Goyal A, Wee SH (2009) Growth of epitaxial \(\upgamma \)-Al\(_2\)O\(_3\) films on rigid single-crystal ceramic substrates and flexible, single-crystal-like metallic substrates by pulsed laser deposition. Thin Solid Films 517:5710–5714CrossRefGoogle Scholar
  46. 46.
    Comer JJ, Tombs NC, Fitzgerald JF (1966) Growth of single-crystal and polycrystalline thin films of MgAl\(_2\)O\(_4\) and MgFe\(_2\)O\(_4\). J Am Ceram Soc 49:237–240CrossRefGoogle Scholar
  47. 47.
    Sieber H, Hesse D, Pan X, Senz S, Heydenreich J (1996) TEM investigations of spinel-forming solid state reactions: reaction mechanism, film orientation, and interface structure during MgAl\(_2\)O\(_4\) formation on MgO (001) and Al\(_2\)O\(_3\) (1\(\overline{1}\).2) single crystal substrates. Z Anorg Allg Chem 622:1658–1666CrossRefGoogle Scholar
  48. 48.
    Waterhouse GIN, Chen WT, Chan A, Jin H, Sun-Waterhouse D, Cowie BCC (2015) Structural, optical, and catalytic support properties of \(\upgamma \)-Al\(_2\)O\(_3\) inverse opals. J Phys Chem C. doi: 10.1021/acs.jpcc.5b00437
  49. 49.
    Redfern SAT, Harrison RJ, O’Neill HSC, Wood DRR (1999) Thermodynamics and kinetics of cation ordering in MgAl\(_2\)O\(_4\) spinel up to 1600 \(^{\circ }\)C from in situ neutron diffraction. Am Mineral 84:299–310CrossRefGoogle Scholar
  50. 50.
    Grundmann M (2011) Formation of epitaxial domains: unified theory and survey of experimental results. Phys Status Solidi B. doi: 10.1002/pssb.201046530
  51. 51.
    Li DX, Pirouz P, Heuer AH, Yadavalli S, Flynn CP (1992) A high-resolution electron microscopy study of MgO/Al\(_2\)O\(_3\) interfaces and MgAl\(_2\)O\(_4\) spinel formation. Philos Mag A. doi: 10.1080/01418619208201530
  52. 52.
    Gupta RK, Yakuphanoglu F (2011) Epitaxial growth of MgFe\(_2\)O\(_4\) (111) thin films on sapphire (0001) substrate. Mater Lett. doi: 10.1016/j.matlet.06.091
  53. 53.
    Winterstein JP, Sezen M, Rečnik A, Carter CB (2016) Electron microscopy observations of the spinel-forming reaction using MgO nanocubes on Al\(_2\)O\(_3\) substrates. J Mater Sci. doi: 10.1007/s10853-015-9366-5
  54. 54.
    Sieber H, Hesse D, Werner P (1997) Misfit accommodation mechanisms at moving reaction fronts during topotaxial spinel-forming thin-film solid-state reactions: a high-resolution transmission electron microscopy study of five spinels of different misfits. Philos Mag A 75:889–908CrossRefGoogle Scholar
  55. 55.
    Kirkendall EO (1942) Diffusion of zinc in alpha brass. T Am I Min Met Eng 147:104–109Google Scholar
  56. 56.
    Smigelskas AD, Kirkendall EO (1947) Zinc diffusion in alpha brass. T Am I Min Met Eng 171:130–142Google Scholar
  57. 57.
    Fan HJ, Knez M, Scholz R, Nielsch K, Pippel E, Hesse D, Zacharias M, Gösele U (2006) Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat Mater. doi: 10.1038/nmat1673

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Geological SciencesFreie Universität BerlinBerlinGermany
  2. 2.Helmholtz-Zentrum Berlin for Materials and EnergyBerlinGermany
  3. 3.GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations