Advertisement

Journal of Materials Science

, Volume 51, Issue 18, pp 8271–8295 | Cite as

Graphene-based flame retardants: a review

  • Bin Sang
  • Zhi-wei Li
  • Xiao-hong Li
  • Lai-gui Yu
  • Zhi-jun Zhang
Review

Abstract

Graphene and its derivatives are potential flame retardant materials with good flame retardant performance; in particular, graphene as an adjuvant in combination with inorganic nanomaterials may be a promising candidate of flame retardant. This review describes the flame retardant mechanism, the development trend, and the classification of graphene-based flame retardants. It points out that graphene has attracted intensive interests in the fields of electronics, energy, and information, due to its excellent properties such as high thermal conductivity, good electron transport ability, and large specific surface area. In the meantime, graphene can change the pyrolysis as well as the thermal conductivity, heat absorption, viscosity and dripping of polymer during the combustion process. In other words, graphene can improve the thermal stability of polymer and delay its ignition, and it can also inhibit fire from spreading and reduce heat release rate.

Keywords

Graphene Sheet Flame Retardant Char Layer Intumescent Flame Retardant MnCo2O4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors appreciate the financial support from the Ministry of Science and technology of China (973 Program; grant No. 2015CB654703), the National Natural Science Foundation of China (grant No. 21371050) and the Science and Technology Research Program of Henan Educational Committee (grant No. 16A430001).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos A 43:1419. doi: 10.1016/j.compositesa.2011.11.019 CrossRefGoogle Scholar
  2. 2.
    Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta J-M, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R Reports 63:100. doi: 10.1016/j.mser.2008.09.002 CrossRefGoogle Scholar
  3. 3.
    Bar M, Alagirusamy R, Das A (2015) Flame Retardant Polymer Composites. Fibers Polym 16:705. doi: 10.1007/s12221-015-0705-6 CrossRefGoogle Scholar
  4. 4.
    Lu S, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661. doi: 10.1016/s0079-6700(02)00018-7 CrossRefGoogle Scholar
  5. 5.
    Irvine DJ, McCluskey JA, Robinson IM (2000) Fire hazards and some common polymers. Polym Degrad Stab 67:383. doi: 10.1016/s0141-3910(99)00127-5 CrossRefGoogle Scholar
  6. 6.
    Hirschler MM (2015) Flame retardants and heat release: review of data on individual polymers. Fire Mater 39:232. doi: 10.1002/fam.2242 CrossRefGoogle Scholar
  7. 7.
    Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17:2283. doi: 10.1039/b702511d CrossRefGoogle Scholar
  8. 8.
    Levchik SV, Weil ED (2000) Combustion and fire retardancy of aliphatic nylons. Polym Int 49:1033. doi: 10.1002/1097-0126(200010)49:10<1033:aid-pi518>3.0.co;2-i CrossRefGoogle Scholar
  9. 9.
    Salas EC, Sun Z, Luttge A, Tour JM (2010) Reduction of graphene oxide via bacterial respiration. ACS Nano 4:4852. doi: 10.1021/nn101081t CrossRefGoogle Scholar
  10. 10.
    Nine MJ, Cole MA, Tran DNH, Losic D (2015) Graphene: a multipurpose material for protective coatings. J Mater Chem A 3:12580. doi: 10.1039/c5ta01010a CrossRefGoogle Scholar
  11. 11.
    Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902. doi: 10.1021/nl0731872 CrossRefGoogle Scholar
  12. 12.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385. doi: 10.1126/science.1157996 CrossRefGoogle Scholar
  13. 13.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498. doi: 10.1021/nl802558y CrossRefGoogle Scholar
  14. 14.
    Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351. doi: 10.1016/j.ssc.2008.02.024 CrossRefGoogle Scholar
  15. 15.
    Nair RR, Blake P, Grigorenko AN et al (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308. doi: 10.1126/science.1156965 CrossRefGoogle Scholar
  16. 16.
    Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706. doi: 10.1038/nature07719 CrossRefGoogle Scholar
  17. 17.
    Kamalanathan M, Karuppusamy S, Sivakumar R, Gopalakrishnan R (2015) Synthesis of reduced graphene oxide-copper tin sulphide composites and their photoconductivity enhancement for photovoltaic applications. J Mater Sci 50:8029. doi: 10.1007/s10853-015-9370-9 CrossRefGoogle Scholar
  18. 18.
    Sanchez VC, Jachak A, Hurt RH, Kane AB (2011) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15. doi: 10.1021/tx200339h CrossRefGoogle Scholar
  19. 19.
    Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686. doi: 10.1039/c2cc00110a CrossRefGoogle Scholar
  20. 20.
    Huang G, Gao J, Wang X, Liang H, Ge C (2012) How can graphene reduce the flammability of polymer nanocomposites? Mater Lett 66:187. doi: 10.1016/j.matlet.2011.08.063 CrossRefGoogle Scholar
  21. 21.
    Higginbotham AL, Lomeda JR, Morgan AB, Tour JM (2009) Graphite oxide flame-retardant polymer nanocomposites. ACS appl mater interfaces 1:2256. doi: 10.1021/am900419m CrossRefGoogle Scholar
  22. 22.
    Zhang R, Hu Y, Xu J, Fan W, Chen Z, Wang Q (2004) Preparation and combustion properties of flame retardant styrene-butyl acrylate copolymer/graphite oxide nanocomposites. Macromol Mater Eng 289:355. doi: 10.1002/mame.200300264 CrossRefGoogle Scholar
  23. 23.
    Shi Y, Li L-J (2011) Chemically modified graphene: flame retardant or fuel for combustion? J Mater Chem 21:3277. doi: 10.1039/c0jm02953j CrossRefGoogle Scholar
  24. 24.
    Liu S, Yan H, Fang Z, Wang H (2014) Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Composites Sci and Technol 90:40. doi: 10.1016/j.compscitech.2013.10.012 CrossRefGoogle Scholar
  25. 25.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5. doi: 10.1016/j.polymer.2010.11.042 CrossRefGoogle Scholar
  26. 26.
    Heidar Pour R, Soheilmoghaddam M, Hassan A, Bourbigot S (2015) Flammability and thermal properties of polycarbonate/acrylonitrile-butadiene-styrene nanocomposites reinforced with multilayer graphene. Polym Degrad Stab 120:88. doi: 10.1016/j.polymdegradstab.2015.06.013 CrossRefGoogle Scholar
  27. 27.
    Hu J, Zhang F (2014) Self-assembled fabrication and flame-retardant properties of reduced graphene oxide/waterborne polyurethane nanocomposites. J Therm Anal Calorim 118:1561. doi: 10.1007/s10973-014-4078-7 CrossRefGoogle Scholar
  28. 28.
    Han Y, Wu Y, Shen M, Huang X, Zhu J, Zhang X (2013) Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J Mater Sci 48:4214. doi: 10.1007/s10853-013-7234-8 CrossRefGoogle Scholar
  29. 29.
    Liang J, Huang Y, Zhang L et al (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297. doi: 10.1002/adfm.200801776 CrossRefGoogle Scholar
  30. 30.
    Dittrich B, Wartig K-A, Hofmann D, Muelhaupt R, Schartel B (2015) The influence of layered, spherical, and tubular carbon nanomaterials’ concentration on the flame retardancy of polypropylene. Polym Compos 36:1230. doi: 10.1002/pc.23027 CrossRefGoogle Scholar
  31. 31.
    Li Y, Pan D, Chen S, Wang Q, Pan G, Wang T (2013) In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater Des 47:850. doi: 10.1016/j.matdes.2012.12.077 CrossRefGoogle Scholar
  32. 32.
    Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21:4222. doi: 10.1039/c0jm03710a CrossRefGoogle Scholar
  33. 33.
    Wang X, Song L, Yang H, Xing W, Lu H, Hu Y (2012) Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J Mater Chem 22:3426. doi: 10.1039/c2jm15637g CrossRefGoogle Scholar
  34. 34.
    Yi C, Wang W, Shen C (2014) The adsorption properties of CO molecules on single-layer graphene nanoribbons. AIP Advances 4:031330. doi: 10.1063/1.4868521 CrossRefGoogle Scholar
  35. 35.
    Bao C, Song L, Xing W et al (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22:6088. doi: 10.1039/c2jm16203b CrossRefGoogle Scholar
  36. 36.
    Chouhan DK, Rath SK, Kumar A et al (2015) Structure reinforcement correlation and chain dynamics in graphene oxide and Laponite-filled epoxy nanocomposites. J Mater Sci 50:7458. doi: 10.1007/s10853-015-9305-5 CrossRefGoogle Scholar
  37. 37.
    Silva LCO, Silva GG, Ajayan PM, Soares BG (2015) Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis. J Mater Sci 50:6407. doi: 10.1007/s10853-015-9193-8 CrossRefGoogle Scholar
  38. 38.
    Wang D, Zhang Q, Zhou K, Yang W, Hu Y, Gong X (2014) The influence of manganese–cobalt oxide/graphene on reducing fire hazards of poly (butylene terephthalate). J Hazard Mater 278:391. doi: 10.1016/j.jhazmat.2014.05.072 CrossRefGoogle Scholar
  39. 39.
    Surudžić R, Janković A, Mitrić M et al (2016) The effect of graphene loading on mechanical, thermal and biological properties of poly(vinyl alcohol)/graphene nanocomposites. J Ind Eng Chem 34:250. doi: 10.1016/j.jiec.2015.11.016 CrossRefGoogle Scholar
  40. 40.
    Wang X, Song L, Pornwannchai W, Hu Y, Kandola B (2013) The effect of graphene presence in flame retarded epoxy resin matrix on the mechanical and flammability properties of glass fiber-reinforced composites. Compos A 53:88. doi: 10.1016/j.compositesa.2013.05.017 CrossRefGoogle Scholar
  41. 41.
    Kim BK (2012) Graphene and graphene/polymer nanocomposites. Express Polym Lett 6:772. doi: 10.3144/expresspolymlett.2012.82 CrossRefGoogle Scholar
  42. 42.
    Kim F, Luo J, Cruz-Silva R, Cote LJ, Sohn K, Huang J (2010) Self-propagating domino-like reactions in oxidized graphite. Adv Funct Mater 20:2867. doi: 10.1002/adfm.201000736 CrossRefGoogle Scholar
  43. 43.
    Hofmann D, Wartig K-A, Thomann R, Dittrich B, Schartel B, Mülhaupt R (2013) Functionalized graphene and carbon materials as additives for melt-extruded flame retardant polypropylene. Macromol Mater Eng 298:1322. doi: 10.1002/mame.201200433 CrossRefGoogle Scholar
  44. 44.
    Dittrich B, Wartig K-A, Hofmann D, Mülhaupt R, Schartel B (2013) Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polym Adv Technol 24:916. doi: 10.1002/pat.3165 CrossRefGoogle Scholar
  45. 45.
    Dittrich B, Wartig K-A, Hofmann D, Mülhaupt R, Schartel B (2013) Flame retardancy through carbon nanomaterials: carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene. Polym Degrad Stab 98:1495. doi: 10.1016/j.polymdegradstab.2013.04.009 CrossRefGoogle Scholar
  46. 46.
    Gavgani JN, Adelnia H, Gudarzi MM (2014) Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. J Mater Sci 49:243. doi: 10.1007/s10853-013-7698-6 CrossRefGoogle Scholar
  47. 47.
    Dittrich B, Wartig K-A, Mülhaupt R, Schartel B (2014) Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 6:2875. doi: 10.3390/polym6112875 CrossRefGoogle Scholar
  48. 48.
    Huang G, Wang S, Pa Song CWu, Chen S, Wang X (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos A 59:18. doi: 10.1016/j.compositesa.2013.12.010 CrossRefGoogle Scholar
  49. 49.
    Wang X, Song L, Yang H, Lu H, Hu Y (2011) Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Ind Eng Chem Res 50:5376. doi: 10.1021/ie102566y CrossRefGoogle Scholar
  50. 50.
    Huang G, Chen S, Song P, Lu P, Wu C, Liang H (2014) Combination effects of graphene and layered double hydroxides on intumescent flame-retardant poly(methyl methacrylate) nanocomposites. Appl Clay Sci 88–89:78. doi: 10.1016/j.clay.2013.11.002 CrossRefGoogle Scholar
  51. 51.
    Han Z, Wang Y, Dong W, Wang P (2014) Enhanced fire retardancy of polyethylene/alumina trihydrate composites by graphene nanoplatelets. Mater Lett 128:275. doi: 10.1016/j.matlet.2014.04.148 CrossRefGoogle Scholar
  52. 52.
    Huang G, Liang H, Wang Y, Wang X, Gao J, Fei Z (2012) Combination effect of melamine polyphosphate and graphene on flame retardant properties of poly(vinyl alcohol). Mater Chem Phys 132:520. doi: 10.1016/j.matchemphys.2011.11.064 CrossRefGoogle Scholar
  53. 53.
    Gong J, Niu R, Liu J et al (2014) Simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene by the combination of graphene with carbon black. Rsc Advances 4:33776. doi: 10.1039/c4ra04623d CrossRefGoogle Scholar
  54. 54.
    Liu S, Yan H, Fang Z, Guo Z, Wang H (2014) Effect of graphene nanosheets and layered double hydroxides on the flame retardancy and thermal degradation of epoxy resin. Rsc Advances 4:18652. doi: 10.1039/c4ra01267d CrossRefGoogle Scholar
  55. 55.
    Ran S, Guo Z, Han L, Fang Z (2014) Effect of Friedel-Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym Int 63:1835. doi: 10.1002/pi.4705 CrossRefGoogle Scholar
  56. 56.
    Pan Y, Hong N, Zhan J, Wang B, Song L, Hu Y (2014) Effect of graphene on the fire and mechanical performances of glass fiber-reinforced polyamide 6 composites containing aluminum hypophosphite. Polym-Plast Technol Eng 53:1467. doi: 10.1080/03602559.2014.909483 CrossRefGoogle Scholar
  57. 57.
    Chee WK, Lim HN, Huang NM, Harrison I (2015) Nanocomposites of graphene/polymers: a review. Rsc Advances 5:68014. doi: 10.1039/c5ra07989f CrossRefGoogle Scholar
  58. 58.
    Cao Y, Feng J, Wu P (2012) Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends. J Mater Chem 22:14997. doi: 10.1039/c2jm31477k CrossRefGoogle Scholar
  59. 59.
    Zhang S-P, Song H-O (2013) Preparation of dispersible graphene oxide as a filler to increase the thermal stability of a flame retarding polymer. New Carbon Mater 28:61. doi: 10.1016/j.carbon.2013.01.052 CrossRefGoogle Scholar
  60. 60.
    Hu H, Wang X, Wang J et al (2010) Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247. doi: 10.1016/j.cplett.2009.11.024 CrossRefGoogle Scholar
  61. 61.
    Jiang S-D, Bai Z-M, Tang G, Hu Y, Song L (2014) Fabrication and characterization of graphene oxide-reinforced poly(vinyl alcohol)-based hybrid composites by the sol–gel method. Compos Sci and Technol 102:51. doi: 10.1016/j.compscitech.2014.06.029 CrossRefGoogle Scholar
  62. 62.
    Ding P, Zhang J, Song N, Tang S, Liu Y, Shi L (2015) Growing polystyrene chains from the surface of graphene layers via RAFT polymerization and the influence on their thermal properties. Compos A 69:186. doi: 10.1016/j.compositesa.2014.11.020 CrossRefGoogle Scholar
  63. 63.
    Song N, Yang J, Ding P, Tang S, Shi L (2015) Effect of polymer modifier chain length on thermal conductive property of polyamide 6/graphene nanocomposites. Compos A 73:232. doi: 10.1016/j.compositesa.2015.03.018 CrossRefGoogle Scholar
  64. 64.
    Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos A 64:79. doi: 10.1016/j.compositesa.2014.04.023 CrossRefGoogle Scholar
  65. 65.
    Shen M-Y, Kuan C-F, Kuan H-C et al (2013) Preparation, characterization, thermal, and flame-retardant properties of green silicon-containing epoxy/functionalized graphene nanosheets composites. J Nanomater 2013:1. doi: 10.1155/2013/747963 Google Scholar
  66. 66.
    Wang X, Song L, Yang H, Xing W, Kandola B, Hua Y (2012) Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J Mater Chem 22:22037. doi: 10.1039/c2jm35479a CrossRefGoogle Scholar
  67. 67.
    Wang J, Xu C, Hu H et al (2011) Synthesis, mechanical, and barrier properties of LDPE/graphene nanocomposites using vinyl triethoxysilane as a coupling agent. J Nanopart Res 13:869. doi: 10.1007/s11051-010-0088-y CrossRefGoogle Scholar
  68. 68.
    Hou S, Su S, Kasner ML, Shah P, Patel K, Madarang CJ (2010) Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem Phys Lett 501:68. doi: 10.1016/j.cplett.2010.10.051 CrossRefGoogle Scholar
  69. 69.
    Kim JS, Hong S, Park DW, Shim SE (2010) Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation. Macromol Res 18:558. doi: 10.1007/s13233-010-0603-0 CrossRefGoogle Scholar
  70. 70.
    Xu J, Liu J, Li K (2015) Application of functionalized graphene oxide in flame-retardant polypropylene. J Vinyl Add Tech 21:278. doi: 10.1002/vnl.21415 CrossRefGoogle Scholar
  71. 71.
    Kim M-J, Jean I-Y, Seo J-M, Dai L, Baek J-B (2014) Graphene phosphonic acid as an efficient flame retardant. ACS Nano 8:2820. doi: 10.1021/nn4066395 CrossRefGoogle Scholar
  72. 72.
    Chen D, Wu F, He M et al (2014) Synthesis and characterization of phosphate intercalated graphite oxide. Fullerenes Nanotubes Carbon Nanostruct 23:6. doi: 10.1080/1536383x.2012.758110 CrossRefGoogle Scholar
  73. 73.
    Some S, Shackery I, Kim SJ, Jun SC (2015) Phosphorus-doped graphene oxide layer as a highly efficient flame retardant. Chem-A 21:15480. doi: 10.1002/chem.201502170 Google Scholar
  74. 74.
    Yuan B, Song L, Liew KM, Hu Y (2015) Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene. Rsc Advances 5:41307. doi: 10.1039/c5ra04699h CrossRefGoogle Scholar
  75. 75.
    Bao C, Guo Y, Yuan B, Hu Y, Song L (2012) Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. J Mater Chem 22:23057. doi: 10.1039/c2jm35001g CrossRefGoogle Scholar
  76. 76.
    Guo Y, Bao C, Song L, Yuan B, Hu Y (2011) In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on the flame behavior. Ind Eng Chem Res 50:7772. doi: 10.1021/ie200152x CrossRefGoogle Scholar
  77. 77.
    Zhang M, Yan H, Yang X, Liu C (2014) Effect of functionalized graphene oxide with a hyperbranched cyclotriphosphazene polymer on mechanical and thermal properties of cyanate ester composites. Rsc Advances 4:45930. doi: 10.1039/c4ra06411a CrossRefGoogle Scholar
  78. 78.
    Hu W, Zhan J, Wang X et al (2014) Effect of functionalized graphene oxide with hyper-branched flame retardant on flammability and thermal stability of cross-linked polyethylene. Ind Eng Chem Res 53:3073. doi: 10.1021/ie4026743 CrossRefGoogle Scholar
  79. 79.
    Qiu S, Hu W, Yu B et al (2015) Effect of functionalized graphene oxide with organophosphorus oligomer on the thermal and mechanical properties and fire safety of polystyrene. Ind Eng Chem Res 54:3309. doi: 10.1021/ie504511f CrossRefGoogle Scholar
  80. 80.
    Hu W, Yu B, Jiang S-D, Song L, Hu Y, Wang B (2015) Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J Hazard Mater 300:58. doi: 10.1016/j.jhazmat.2015.06.040 CrossRefGoogle Scholar
  81. 81.
    Wang X, Hu Y, Song L, Xing W, Lu H (2010) Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus–silicon synergism of flame retardancy. J Polym Sci B 48:693. doi: 10.1002/polb.21939 CrossRefGoogle Scholar
  82. 82.
    Wang Z, Wei P, Qian Y, Liu J (2014) The synthesis of a novel graphene-based inorganic–organic hybrid flame retardant and its application in epoxy resin. Compos B 60:341. doi: 10.1016/j.compositesb.2013.12.033 CrossRefGoogle Scholar
  83. 83.
    Gui H, Xu P, Hu Y et al (2015) Synergistic effect of graphene and an ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide. Rsc Advances 5:27814. doi: 10.1039/C4RA16393A CrossRefGoogle Scholar
  84. 84.
    Xu JY, Liu J, Li KD, Miao L, Tanemura S (2015) Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene. Sci Technol Adv Mater 16:025006. doi: 10.1088/1468-6996/16/2/025006 CrossRefGoogle Scholar
  85. 85.
    Liao S-H, Liu P-L, Hsiao M-C et al (2012) One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind Eng Chem Res 51:4573. doi: 10.1021/ie2026647 CrossRefGoogle Scholar
  86. 86.
    Yuan B, Sheng H, Mu X et al (2015) Enhanced flame retardancy of polypropylene by melamine-modified graphene oxide. J Mater Sci 50:5389. doi: 10.1007/s10853-015-9083-0 CrossRefGoogle Scholar
  87. 87.
    Liu S, Fang Z, Yan H, Wang H (2016) Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO. Rsc Advances 6:5288. doi: 10.1039/c5ra25988f CrossRefGoogle Scholar
  88. 88.
    Huang G, Chen S, Tang S, Gao J (2012) A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater Chem Phys 135:938. doi: 10.1016/j.matchemphys.2012.05.082 CrossRefGoogle Scholar
  89. 89.
    Yu B, Wang X, Qian X et al (2014) Functionalized graphene oxide/phosphoramide oligomer hybrids flame retardant prepared via in situ polymerization for improving the fire safety of polypropylene. Rsc Advances 4:31782. doi: 10.1039/c3ra45945d CrossRefGoogle Scholar
  90. 90.
    Yuan B, Bao C, Song L, Hong N, Liew KM, Hu Y (2014) Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J 237:411. doi: 10.1016/j.cej.2013.10.030 CrossRefGoogle Scholar
  91. 91.
    Wang X, Xing W, Feng X, Yu B, Song L, Hu Y (2014) Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism. Polym Chem 5:1145. doi: 10.1039/c3py00963g CrossRefGoogle Scholar
  92. 92.
    Wang X, Hu Y, Song L et al (2012) Comparative study on the synergistic effect of POSS and graphene with melamine phosphate on the flame retardance of poly(butylene succinate). Thermochim Acta 543:156. doi: 10.1016/j.tca.2012.05.017 CrossRefGoogle Scholar
  93. 93.
    Yu B, Shi Y, Yuan B et al (2015) Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A 3:8034. doi: 10.1039/c4ta06613h CrossRefGoogle Scholar
  94. 94.
    Li K-Y, Kuan C-F, Kuan H-C et al (2014) Preparation and properties of novel epoxy/graphene oxide nanosheets (GON) composites functionalized with flame retardant containing phosphorus and silicon. Mater Chem Phys 146:354. doi: 10.1016/j.matchemphys.2014.03.037 CrossRefGoogle Scholar
  95. 95.
    Qian X, Song L, Yu B et al (2013) Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J Mater Chem A 1:6822. doi: 10.1039/c3ta10416h CrossRefGoogle Scholar
  96. 96.
    Schäfer A, Seibold S, Lohstroh W, Walter O, Döring M (2007) Synthesis and properties of flame-retardant epoxy resins based on DOPO and one of its analog DPPO. J Appl Polym Sci 105:685. doi: 10.1002/app.26073 CrossRefGoogle Scholar
  97. 97.
    Hsiue G-H, Shiao S-J, Wei H-F, Kuo W-J, Sha Y-A (2001) Novel phosphorus-containing dicyclopentadiene-modified phenolic resins for flame-retardancy applications. J Appl Polym Sci 79:342. doi: 10.1002/1097-4628(20010110)79:2<342:aid-app180>3.0.co;2-8 CrossRefGoogle Scholar
  98. 98.
    Wu K, Zhang Y, Hu W, Lian J, Hu Y (2013) Influence of ammonium polyphosphate microencapsulation on flame retardancy, thermal degradation and crystal structure of polypropylene composite. Compos Sci Technol 81:17. doi: 10.1016/j.compscitech.2013.03.018 CrossRefGoogle Scholar
  99. 99.
    Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902. doi: 10.1016/j.progpolymsci.2010.03.001 CrossRefGoogle Scholar
  100. 100.
    Yang H, Li F, Shan C et al (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632. doi: 10.1039/b901421g CrossRefGoogle Scholar
  101. 101.
    Huang YW, Song SQ, Yang Y, Cao K, Yang JX, Chang GJ (2015) Decomposable double-walled hybrid nanorods: formation mechanism and their effect on flame retardancy of epoxy resin composites. J Mate Chem A 3:15935. doi: 10.1039/c5ta02149a CrossRefGoogle Scholar
  102. 102.
    Beyer G (2002) Nanocomposites: a new class of flame retardants for polymers. Plastics Additives and Compounding 4:22. doi: 10.1016/s1464-391x(02)80151-9 CrossRefGoogle Scholar
  103. 103.
    Norouzi M, Zare Y, Kiany P (2015) Nanoparticles as effective flame retardants for natural and synthetic textile polymers: application, mechanism, and optimization. Polym Rev 55:531. doi: 10.1080/15583724.2014.980427 CrossRefGoogle Scholar
  104. 104.
    Kashiwagi T, Du FM, Douglas JF, Winey KI, Harris RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4:928. doi: 10.1038/nmat1502 CrossRefGoogle Scholar
  105. 105.
    Ray S, Easteal AJ (2007) Advances in Polymer-Filler Composites: macro to Nano. Mater Manuf Processes 22:741. doi: 10.1080/10426910701385366 CrossRefGoogle Scholar
  106. 106.
    Hong N, Song L, Hull TR et al (2013) Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites. Mater Chem Phys 142:531. doi: 10.1016/j.matchemphys.2013.07.048 CrossRefGoogle Scholar
  107. 107.
    Wang X, Xing W, Feng X et al (2014) The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins. Chem Eng J 250:214. doi: 10.1016/j.cej.2014.01.106 CrossRefGoogle Scholar
  108. 108.
    Jiang S-D, Bai Z-M, Tang G et al (2014) Fabrication of Ce-doped MnO2 decorated graphene sheets for fire safety applications of epoxy composites: flame retardancy, smoke suppression and mechanism. J Mater Chem A 2:17341. doi: 10.1039/c4ta02882a CrossRefGoogle Scholar
  109. 109.
    Feng X, Xing W, Song L, Hu Y, Liew KM (2015) TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly(vinyl chloride) composites. Chem Eng J 260:524. doi: 10.1016/j.cej.2014.08.103 CrossRefGoogle Scholar
  110. 110.
    Attia NF, Abd El-Aal NS, Hassan MA (2016) Facile synthesis of graphene sheets decorated nanoparticles and flammability of their polymer nanocomposites. Polym Degrad Stab 126:65. doi: 10.1016/j.polymdegradstab.2016.01.017 CrossRefGoogle Scholar
  111. 111.
    Shi Y, Qian X, Zhou K et al (2013) CuO/graphene nanohybrids: preparation and enhancement on thermal stability and smoke suppression of polypropylene. Ind Eng Chem Res 52:13654. doi: 10.1021/ie401535h CrossRefGoogle Scholar
  112. 112.
    Ran S, Chen C, Guo Z, Fang Z (2014) Char Barrier Effect of Graphene Nanoplatelets on the Flame Retardancy and Thermal Stability of High-Density Polyethylene Flame-Retarded by Brominated Polystyrene. Journal of Applied Polymer Science 131: n/a. Doi: 10.1002/app.40520
  113. 113.
    Yao K, Gong J, Tian N et al (2015) Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4nanoparticles. Rsc Advances 5:31910. doi: 10.1039/c5ra01046b CrossRefGoogle Scholar
  114. 114.
    Zhang X, Alloul O, He Q et al (2013) Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer 54:3594. doi: 10.1016/j.polymer.2013.04.062 CrossRefGoogle Scholar
  115. 115.
    Hong N, Pan Y, Zhan J et al (2013) Fabrication of graphene/Ni-Ce mixed oxide with excellent performance for reducing fire hazard of polypropylene. Rsc Advances 3:16440. doi: 10.1039/c3ra42095g CrossRefGoogle Scholar
  116. 116.
    Bao C, Song L, Wilkie CA et al (2012) Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. J Mater Chem 22:16399. doi: 10.1039/c2jm32500d CrossRefGoogle Scholar
  117. 117.
    Zhou K, Wang B, Liu J et al (2014) The influence of α-FeOOH/rGO hybrids on the improved thermal stability and smoke suppression properties in polystyrene. Mater Res Bull 53:272. doi: 10.1016/j.materresbull.2014.02.029 CrossRefGoogle Scholar
  118. 118.
    Yuan B, Bao C, Qian X et al (2014) Synergetic dispersion effect of graphene nanohybrid on the thermal stability and mechanical properties of ethylene vinyl acetate copolymer nanocomposite. Ind Eng Chem Res 53:1143. doi: 10.1021/ie403438k CrossRefGoogle Scholar
  119. 119.
    Hong N, Song L, Wang B et al (2014) Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Mater Res Bull 49:657. doi: 10.1016/j.materresbull.2013.09.051 CrossRefGoogle Scholar
  120. 120.
    Wang X, Zhou S, Xing W et al (2013) Self-assembly of Ni-Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J of Mater Chem A 1:4383. doi: 10.1039/c3ta00035d CrossRefGoogle Scholar
  121. 121.
    Hong N, Zhan J, Wang X et al (2014) Enhanced mechanical, thermal and flame retardant properties by combining graphene nanosheets and metal hydroxide nanorods for Acrylonitrile–Butadiene–Styrene copolymer composite. Compos A 64:203. doi: 10.1016/j.compositesa.2014.04.015 CrossRefGoogle Scholar
  122. 122.
    Jiang S, Bai Z, Tang G, Hu Y, Song L (2014) Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites. Ind Eng Chem Res 53:6708. doi: 10.1021/ie500023w CrossRefGoogle Scholar
  123. 123.
    Pan Y-T, Wang D-Y (2015) One-step hydrothermal synthesis of nano zinc carbonate and its use as a promising substitute for antimony trioxide in flame retardant flexible poly(vinyl chloride). Rsc Advances 5:27837. doi: 10.1039/c5ra02987b CrossRefGoogle Scholar
  124. 124.
    Wang D, Zhou K, Yang W, Xing W, Hu Y, Gong X (2013) Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind Eng Chem Res 52:17882. doi: 10.1021/ie402441g CrossRefGoogle Scholar
  125. 125.
    Laachachi A, Cochez M, Leroy E, Gaudon P, Ferriol M, Lopez Cuesta JM (2006) Effect of Al2O3 and TiO2 nanoparticles and APP on thermal stability and flame retardance of PMMA. Polym Adv Technol 17:327. doi: 10.1002/pat.690 CrossRefGoogle Scholar
  126. 126.
    Zhou K, Gui Z, Hu Y (2016) The influence of graphene based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos A 80:217. doi: 10.1016/j.compositesa.2015.10.029 CrossRefGoogle Scholar
  127. 127.
    Nie L, Liu C, Liu L, Jiang T, Hong J, Huang J (2015) Study of the thermal stability and flame retardant properties of graphene oxide-decorated zirconium organophosphate based on polypropylene nanocomposites. Rsc Advances 5:92318. doi: 10.1039/c5ra13850g CrossRefGoogle Scholar
  128. 128.
    Huang G, Song P, Liu L et al (2016) Fabrication of multifunctional graphene decorated with bromine and nano-Sb2O3 towards high-performance polymer nanocomposites. Carbon 98:689. doi: 10.1016/j.carbon.2015.11.063 CrossRefGoogle Scholar
  129. 129.
    Li P, Zheng Y, Li M et al (2016) Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Compos A 81:172. doi: 10.1016/j.compositesa.2015.11.013 CrossRefGoogle Scholar
  130. 130.
    Gao T, Chen L, Li Z, Yu L, Wu Z, Zhang Z (2016) Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride). Nanoscale Res Lett 11:192. doi: 10.1186/s11671-016-1403-z CrossRefGoogle Scholar
  131. 131.
    Pan H, Wang W, Pan Y, Song L, Hu Y, Liew KM (2015) Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS appl mater & interfaces 7:101. doi: 10.1021/am507045g CrossRefGoogle Scholar
  132. 132.
    Bai S, Shen X (2012) Graphene–inorganic nanocomposites. Rsc Advances 2:64. doi: 10.1039/c1ra00260k CrossRefGoogle Scholar
  133. 133.
    Zhu J, Chen M, He Q, Shao L, Wei S, Guo Z (2013) An overview of the engineered graphene nanostructures and nanocomposites. Rsc Advances 3:22790. doi: 10.1039/c3ra44621b CrossRefGoogle Scholar
  134. 134.
    Song P, Liu L, Fu S et al (2013) Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites. Nanotechnology 24:125704. doi: 10.1088/0957-4484/24/12/125704 CrossRefGoogle Scholar
  135. 135.
    Zhuo D, Wang R, Wu L et al (2013) Flame retardancy effects of graphene nanoplatelet/carbon nanotube hybrid membranes on carbon fiber reinforced epoxy composites. Journal of Nanomaterials 2013:1. doi: 10.1155/2013/820901 CrossRefGoogle Scholar
  136. 136.
    Kausar A (2014) Formation and properties of poly (vinyl butyral-co-vinyl alcohol-co-vinyl acetate)/polystyrene composites reinforced with graphene oxide-nanodiamond. Am J Polym Sci 4:54. doi: 10.5923/j.ajps.20140402.05 Google Scholar
  137. 137.
    Song PA, Liu LN, Huang GB, Yu YM, Guo QP (2013) Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C-60@ graphene nanocarbon hybrid. Nanotechnology 24:505706. doi: 10.1088/0957-4484/24/50/505706 CrossRefGoogle Scholar
  138. 138.
    Zhou L, Liu H, Zhang X (2015) Graphene and carbon nanotubes for the synergistic reinforcement of polyamide 6 fibers. J Mater Sci 50:2797. doi: 10.1007/s10853-015-8837-z CrossRefGoogle Scholar
  139. 139.
    Wang F, Drzal LT, Qin Y, Huang Z (2015) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50:1082. doi: 10.1007/s10853-014-8665-6 CrossRefGoogle Scholar
  140. 140.
    Li X, Wang Z, Wu L (2015) Preparation of a silica nanospheres/graphene oxide hybrid and its application in phenolic foams with improved mechanical strengths, friability and flame retardancy. Rsc Advances 5:99907. doi: 10.1039/c5ra19830e CrossRefGoogle Scholar
  141. 141.
    Chen L, Chai S, Liu K et al (2012) Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS appl mater interfaces 4:4398. doi: 10.1021/am3010576 CrossRefGoogle Scholar
  142. 142.
    Wang R, Zhuo D, Weng Z et al (2015) A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J Mater Chem A 3:9826. doi: 10.1039/C5TA00722D CrossRefGoogle Scholar
  143. 143.
    Qian X, Yu B, Bao C et al (2013) Silicon nanoparticle decorated graphene composites: preparation and their reinforcement on the fire safety and mechanical properties of polyurea. J Mater Chem A 1:9827. doi: 10.1039/c3ta11730h CrossRefGoogle Scholar
  144. 144.
    Wicklein B, Kocjan A, Salazar-Alvarez G et al (2015) Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol 10:277. doi: 10.1038/nnano.2014.248 CrossRefGoogle Scholar
  145. 145.
    Huang G, Chen S, Liang H, Wang X, Gao J (2013) Combination of graphene and montmorillonite reduces the flammability of poly(vinyl alcohol) nanocomposites. Appl Clay Sci 80–81:433. doi: 10.1016/j.clay.2013.01.005 CrossRefGoogle Scholar
  146. 146.
    Ming P, Song Z, Gong S et al (2015) Nacre-inspired integrated nanocomposites with fire retardant properties by graphene oxide and montmorillonite. J Mater Chem A 3:21194. doi: 10.1039/c5ta05742f CrossRefGoogle Scholar
  147. 147.
    Li LL, Chen SH, Ma WJ et al (2014) A novel reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO) hybrid composite and its flame-retardant application for polyamide 6. Express Polym Lett 8:450. doi: 10.3144/expresspolymlett.2014.48 CrossRefGoogle Scholar
  148. 148.
    Tang Z, Wei Q, Lin T, Guo B, Jia D (2013) The use of a hybrid consisting of tubular clay and graphene as a reinforcement for elastomers. Rsc Advances 3:17057. doi: 10.1039/c3ra42568a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.National & Local Joint Engineering Research Center for Applied Technology of Hybrid NanomaterialsHenan UniversityKaifengPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Nano Functional Materials and Applications of Henan ProvinceHenan UniversityKaifengPeople’s Republic of China

Personalised recommendations