Advertisement

Journal of Materials Science

, Volume 51, Issue 17, pp 7929–7943 | Cite as

Rationalizing the impact of aging on fiber–matrix interface and stability of cement-based composites submitted to carbonation at early ages

  • G. H. D. TonoliEmail author
  • V. D. Pizzol
  • G. Urrea
  • S. F. Santos
  • L. M. Mendes
  • V. Santos
  • V. M. John
  • M. Frías
  • H. SavastanoJr.
Original Paper

Abstract

The objective of this work is to show the effect of carbonation at early stages on fiber–cement composites and impact on hydration, chemical and dimension stability. Carbonation increased the content of CaCO3 polymorphs and consumed Ca(OH)2 and other hydrated calcium phases. Micrographs and energy-dispersive spectrometry showed the CaCO3 formed is precipitated in the pore structure of the matrix, decreasing diffusion of Si, S, and Al during hydration. Therefore, a refining process of pore sizes is produced, and fiber–matrix interface in carbonated composites was improved, leading to volume stabilization of the composite, as indicated by lower drying shrinkage and lower porosity.

Keywords

Cellulose Fiber Calcium Hydroxide Ettringite Hydration Product Cement Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Thanks to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Process nos. 2012/51467-3; 2013/50790-8; 2013/23810-8; i-LINK program between CSIC and FAPESP Grant nos. 2013/50790-8 and i-Link0675-2013), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Infibra S. A., Imbralit Ltda., Research Nucleus on Materials for Biosystems - Biosmat (FZEA/USP), and Rede Brasileira de Compósitos e Nanocompósitos Lignocelulósicos (RELIGAR), in Brazil. Thanks also to the collaboration agreement between the University of São Paulo (FZEA/USP, Brazil) and the State Agency for National Research Council (IETcc-CSIC, Spain) that benefited this present partnership.

References

  1. 1.
    Ikai S, Reichert JR, Rodrigues AV, Zampieri VA (2010) Asbestos-free technology with new high toughness polypropylene (PP) fibers in air-cured Hatschek process. Constr Build Mater 24(2):171–180CrossRefGoogle Scholar
  2. 2.
    Ardanuy M, Claramunt J, Toledo Filho RD (2015) Cellulosic fiber reinforced cement-based composites: a review of recent. Constr Build Mater 79:115–128CrossRefGoogle Scholar
  3. 3.
    Hakamy A, Shaikh FUA, Low IM (2015) Thermal and mechanical properties of NaOH treated hemp fabric and calcined nanoclay-reinforced cement nanocomposites. Mater Des 80:70–81CrossRefGoogle Scholar
  4. 4.
    Mohr BJ, Nanko H, Kurtis KE (2005) Durability of Kraft pulp fiber–cement composites to wet/dry cycling. Cem Concr Compos 27(4):435–448CrossRefGoogle Scholar
  5. 5.
    Mohr BJ, Biernacki JJ, Kurtis KE (2006) Microstructural and chemical effects of wet/dry cycling on pulp fiber–cement composites. Cem Concr Res 36:1240–1251CrossRefGoogle Scholar
  6. 6.
    Tonoli GHD, Savastano H Jr, Fuente E, Negro C, Blanco A, Rocco Lahr LA (2010) Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind Crop Prod 31:225–232CrossRefGoogle Scholar
  7. 7.
    Tonoli GHDT, Rodrigues Filho UP, Savastano H Jr, Bras J, Belgacem MN, Rocco Lahr FA (2009) Cellulose modified fibres in cement based composites. Compos Part A 40(12):2046–2053CrossRefGoogle Scholar
  8. 8.
    Tonoli GHD, Santos SF, Savastano H Jr, Delvasto S, Mejía de Gutiérrez R, Lopez de Murphy MM (2011) Effects of natural weathering on microstructure and mineral composition of cementitious roofing tiles reinforced with fique fibre. Cem Concr Compos 33(2):225–232CrossRefGoogle Scholar
  9. 9.
    Tonoli GHD, Belgacem MN, Bras J, Pereira-da-Silva MA, Lahr FAR, Savastano H Jr (2012) Impact of bleaching pine fibre on the fibre/cement interface. J Mater Sci 47:4167–4177CrossRefGoogle Scholar
  10. 10.
    Rostami V, Shao Y, Boyd AJ (2012) Carbonation curing versus steam curing for precast concrete production. J Mater Civ Eng 24:1221–1229CrossRefGoogle Scholar
  11. 11.
    Lin X (2007) Effect of early age carbonation on strength and PH of concrete. M. Eng Thesis, McGill University, Canada, p 119Google Scholar
  12. 12.
    Rostami V, Shao Y, Boyd AJ, He Z (2012) Microstructure of cement paste subject to early carbonation curing. Cem Concr Res 42:186–193CrossRefGoogle Scholar
  13. 13.
    Soroushian P, Won J-P, Hassan M (2012) Durability characteristics of CO2-cured cellulose fiber reinforced cement composites. Constr Build Mater 34:44–53CrossRefGoogle Scholar
  14. 14.
    Fernández-Carrasco L, Torréns-Martín D, Martínez-Ramírez S (2012) Carbonation of ternary building cementing materials. Cem Concr Compos 34:1180–1186CrossRefGoogle Scholar
  15. 15.
    Ogino T, Suzuki T, Sawada K (1987) The formation and transformation mechanism of calcium carbonate in water. Geochim Cosmochim Acta 51:2757–2767CrossRefGoogle Scholar
  16. 16.
    Gopi S, Subramanian VK, Palanisamy K (2013) Aragonite–calcite–vaterite: a temperature influenced sequential polymorphic transformation of CaCO3 in the presence of DTPA. Mater Res Bull 48:1906–1912CrossRefGoogle Scholar
  17. 17.
    Taft H (1967) Carbonate rocks. In: Chilingar GV, Bissell HJ, Fairbridge RW (eds) Developments in sedimentology, vol 3, 99th edn. Elsevier, Amsterdam, pp 151–167Google Scholar
  18. 18.
    Yamaguchi T, Murakawa K (1981) Preparation of spherical CaCO3, (vaterite) powder transition to calcite in water. Zairyo 30:856–860Google Scholar
  19. 19.
    Tzotzi C, Pahiadaki T, Yiantsios SG, Karabelas AJ, Andritsos N (2007) A study of CaCO3 scale formation and inhibition in RO and NF membrane processes. J Membr Sci 296:171–184CrossRefGoogle Scholar
  20. 20.
    Toledo Filho RD, England GL, Ghavami K, Scrivener K (2003) Development of vegetable fibre–mortar composites of improved durability. Cem Concr Compos 25:185–196CrossRefGoogle Scholar
  21. 21.
    Pizzol VD, Mendes LM, Savastano H Jr, Frias M, Davila FJ, Cincotto MA, John VM, Tonoli GHD (2014) Mineralogical and microstructural changes promoted by accelerated carbonation and ageing cycles of hybrid fiber–cement composites. Constr Build Mater 68:750–756CrossRefGoogle Scholar
  22. 22.
    Lesti M, Tiemeyer C, Plank J (2013) CO2 stability of Portland cement based well cementing systems for use on carbon capture and storage (CCS) wells. Cem Concr Res 45:45–54CrossRefGoogle Scholar
  23. 23.
    Tonoli GHD, Santos SF, Joaquim AP, Savastano H Jr (2010) Effect of accelerated carbonation on cementitious roofing tiles reinforced with lignocellulosic fibre. Constr Build Mater 24:193–201CrossRefGoogle Scholar
  24. 24.
    Santos SF, Schmidt R, Almeida AEFS, Tonoli GHD, Savastano H Jr (2015) Supercritical carbonation treatment on extruded fibre–cement reinforced with vegetable fibres. Cem Concr Compos 56:84–94CrossRefGoogle Scholar
  25. 25.
    Dias CMR, Savastano H Jr, John VM (2010) Exploring the potential of functionally graded materials concept for the development of fiber cement. Constr Build Mater 24(2):140–146CrossRefGoogle Scholar
  26. 26.
    Associação Brasileira de Normas Técnicas (1991) NBR 11578: Cimento Portland Composto. Rio de Janeiro, p 1453Google Scholar
  27. 27.
    Pizzol VD, Mendes LM, Frezzatti L, Savastano H Jr, Tonoli GHD (2014) Effect of accelerated carbonation on the microstructure and physical properties of hybrid fiber–cement composites. Miner Eng 59:101–106CrossRefGoogle Scholar
  28. 28.
    European Standard, EN 494 (1994) Fibre–cement profiled sheets and fittings for roofing—products specification and test methodsGoogle Scholar
  29. 29.
    Tonoli GHD, Santos SF, Teixeira RS, Pereira-da-Silva MA, Lahr FAR, Pescatori Silva FH, Savastano H Jr (2013) Effect of eucalyptus pulp refining on the performance and durability of fibre–cement composites. J Trop For Sci 25(3):400–409Google Scholar
  30. 30.
    Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford Pub, LondonCrossRefGoogle Scholar
  31. 31.
    Hoppe Filho J (2008) Sistemas cimento, cinza volante e cal hidratada: mecanismo de hidratação, microestrutura e carbonatação de concreto. Tese (Doutorado em Engenharia Civil)—Escola de Engenharia, Universidade de São Paulo, São Paulo (in Portuguese)Google Scholar
  32. 32.
    American Society for Testing and Materials. ASTM C 948-81 (2009) Test method for dry and wet bulk density, water absorption, and apparent porosity of thin sections of glass–fiber reinforced concrete. West Conshohocken, PA, USAGoogle Scholar
  33. 33.
    Associação Brasileira de Normas Técnicas (2007) NBR 15498: placa plana cimentícia sem amianto, requisitos e métodos de ensaio. Rio de Janeiro 26:453Google Scholar
  34. 34.
    Savastano H Jr, Agopyan V (1999) Transition zone studies of vegetable fibre–cement paste composites. Cem Concr Compos 21:49–57CrossRefGoogle Scholar
  35. 35.
    Farahi E, Purnell P, Short NR (2013) Supercritical carbonation of calcareous composites: influence of curing. Cem Concr Compos 43:48–53CrossRefGoogle Scholar
  36. 36.
    Farahi E, Purnell P, Short NR (2013) Supercritical carbonation of calcareous composites: influence of mix design. Cem Concr Compos 43:12–19CrossRefGoogle Scholar
  37. 37.
    Frías M, Goñi S (2013) Accelerated carbonation effect on behavior of ternary Portland cements. Compos B 48:122–128CrossRefGoogle Scholar
  38. 38.
    Black L, Garbev K, Gee I (2008) Surface carbonation of synthetic C–S–H samples: a comparison between fresh and aged C–S–H using X-ray photoelectron spectroscopy. Cem Concr Res 38(6):745–750CrossRefGoogle Scholar
  39. 39.
    Jennings HM (2008) Refinements to colloid model of C–S–H in cement: CM-II. Cem Concr Res 38(3):275–289CrossRefGoogle Scholar
  40. 40.
    Morales-Florez V, Findling N, Brunet F (2012) Changes on the nanostructure of cementitius calcium silicate hydrates (C–S–H) induced by aqueous carbonation. J Mater Sci 47:764–771CrossRefGoogle Scholar
  41. 41.
    Morandeau A, Thiéry M, Dangla P (2014) Investigation of the carbonation mechanism of CH and C–S–H in terms of kinetics, microstructure changes and moisture properties. Cem Concr Res 56:153–170CrossRefGoogle Scholar
  42. 42.
    Glasser F, Matschei T (2007) Interactions between Portland cement and carbon dioxide. ICCC, MontrealGoogle Scholar
  43. 43.
    Myneni SCB, Traina S, Waychunas GA, Logan TJ (1998) Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geoch Cosmoch Acta 62:349–3514CrossRefGoogle Scholar
  44. 44.
    Matschei T, Lothenbach B, Glasser FP (2007) The AFm phase in Portland cement. Cem Concr Res 37:118–130CrossRefGoogle Scholar
  45. 45.
    Castellote M, Fernandez L, Andrade C, Alonso C (2009) Chemical changes and phase analysis of OPC pastes carbonated at different CH concentrations. Mater Struct 42:515–525CrossRefGoogle Scholar
  46. 46.
    Johannesson B, Utgenannt P (2001) Microstructural changes caused by carbonation of cement mortar. Cem Concr Res 31:925–931CrossRefGoogle Scholar
  47. 47.
    Silva AC, Savastano H Jr, John VM (2009) Envelhecimento de compósitos à base de escória de alto-forno reforçados com polpa celulósica residual de eucalipto. Ambient Constr 9(1):25–44Google Scholar
  48. 48.
    Hyvert N, Sellier A, Duprat F, Rougeau P, Francisco P (2010) Dependency of C–S–H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation. Cem Concr Res 40:1582–1589CrossRefGoogle Scholar
  49. 49.
    Pu Q, Jiang L, Xu J, Chu H, Xu Y, Zhang Y (2012) Evolution of pH and chemical composition of pore solution in carbonated concrete. Constr Build Mater 28:519–524CrossRefGoogle Scholar
  50. 50.
    Almeida AEFS, Tonoli GHD, Santos SF, Savastano H Jr (2010) Carbonatação acelerada efetuada nas primeiras idades em compósitos cimentícios reforçados com polpas celulósicas. Ambient Const 10(4):233–246CrossRefGoogle Scholar
  51. 51.
    Almeida AEFS, Tonoli GHD, Santos SF, Savastano H Jr (2013) Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbonation at early age. Cem Concr Compos 22:49–58CrossRefGoogle Scholar
  52. 52.
    Fernández-Bertos M, Simons SJR, Hills CD, Carey PJ (2004) A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. J Hazard Mater B112:193–205CrossRefGoogle Scholar
  53. 53.
    Rostami V, Shao Y, Boyd AJ (2011) Durability of concrete pipes subjected to combined steam and carbonation curing. Constr Build Mater 25(8):3345–3355CrossRefGoogle Scholar
  54. 54.
    Thiery M, Villain G, Dangla P, Platret G (2007) Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res 37:1047–1058CrossRefGoogle Scholar
  55. 55.
    Coussy O, Dangla P, Lassabatere T, Baroghel-Bouny V (2004) The equivalent pore pressure and the swelling and shrinkage of cement-based materials. Mater Struct Concr Sci Eng 37:15–20Google Scholar
  56. 56.
    Odler I, Colán-Subauste J (1999) Investigations on cement expansion associated with ettringite formation. Cem Concr Res 29:731–735CrossRefGoogle Scholar
  57. 57.
    Pavoine A, Brunetaud X, Divet L (2012) The impact of cement parameters on delayed ettringite formation. Cem Concr Compos 34:521–528CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • G. H. D. Tonoli
    • 1
    Email author
  • V. D. Pizzol
    • 1
  • G. Urrea
    • 2
  • S. F. Santos
    • 3
  • L. M. Mendes
    • 1
  • V. Santos
    • 2
  • V. M. John
    • 4
  • M. Frías
    • 5
  • H. SavastanoJr.
    • 2
  1. 1.Department of Forest ScienceUniversidade Federal de Lavras (UFLA)LavrasBrazil
  2. 2.Department of Biosystems Engineering, Faculdade de Zootecnia e Engenharia de AlimentosUniversidade de São Paulo (USP)PirassunungaBrazil
  3. 3.Department of Materials and Technology, Faculdade de EngenhariaUniversidade Estadual Paulista (UNESP)GuaratinguetáBrazil
  4. 4.Department of Construction Engineering, Escola PolitécnicaUniversidade de São PauloSão PauloBrazil
  5. 5.Eduardo Torroja Institute for Construction Science (CSIC)MadridSpain

Personalised recommendations