Journal of Materials Science

, Volume 51, Issue 16, pp 7691–7698 | Cite as

Atomic-column scanning transmission electron microscopy analysis of misfit dislocations in GaSb/GaAs quantum dots

  • N. Fernández-Delgado
  • M. Herrera
  • M. F. Chisholm
  • M. A. Kamarudin
  • Q. D. Zhuang
  • M. Hayne
  • S. I. Molina
Original Paper

Abstract

The structural quality of GaSb/GaAs quantum dots (QDs) has been analyzed at atomic scale by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy. In particular, we have studied the misfit dislocations that appear because of the high-lattice mismatch in the heterostructure. Our results have shown the formation of Lomer dislocations not only at the interface between the GaSb QDs and the GaAs substrate, but also at the interface with the GaAs capping layer, which is not a frequent observation. The analysis of these dislocations points to the existence of chains of dislocation loops around the QDs. The dislocation core of the observed defects has been characterized, showing that they are reconstructed Lomer dislocations, which have less distortion at the dislocation core in comparison to unreconstructed ones. Strain measurements using geometric phase analysis show that these dislocations may not fully relax the strain due to the lattice mismatch in the GaSb QDs.

Keywords

GaAs GaSb Lattice Mismatch GaAs Substrate Dislocation Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Spanish MINECO (projects TEC2014-53727-C2-2-R and CONSOLIDER INGENIO 2010 CSD2009-00013), and Junta de Andalucía (PAI research group TEP-946). The research leading to these results has received funding from the European Union H2020 Program (PROMIS ITN European network). STEM observations, carried out at Oak Ridge National Laboratory, were sponsored by the U.S. DOE Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Compliance with ethical standards

Conflict of interest

The authors declare that no conflicts of interest exists that could potentially influence or bias the submitted work.

References

  1. 1.
    Munnelly P, Heindel T, Karow MM, Höfling S, Kamp M, Schneider C, Reitzenstein S (2015) A pulsed nonclassical light source driven by an integrated electrically triggered quantum dot microlaser. IEEE J Sel Top Quantum Electron 21(6):1900609. doi: 10.1109/JSTQE.2015.2418219 CrossRefGoogle Scholar
  2. 2.
    Downs C, Vandervelde TE (2013) Progress in infrared photodetectors since 2000. Sensors 13(4):5054–5098. doi: 10.3390/s130405054 (Switzerland) CrossRefGoogle Scholar
  3. 3.
    Carrington PJ, Mahajumi AS, Wagener MC, Botha JR, Zhuang Q, Krier A (2012) Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solar cells. Physics B 407(10):1493–1496. doi: 10.1016/j.physb.2011.09.069 CrossRefGoogle Scholar
  4. 4.
    Laghumavarapu RB, Moscho A, Khoshakhlagh A, El-Emawy M, Lester LF, Huffaker DL (2007) GaSbGaAs type II quantum dot solar cells for enhanced infrared spectral response. Appl Phys Lett 90(17):173125. doi: 10.1063/1.2734492 CrossRefGoogle Scholar
  5. 5.
    Smakman EP, Garleff JK, Young RJ, Hayne M, Rambabu P, Koenraad PM (2012) GaSb/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy. Appl Phys Lett 100(14):142116. doi: 10.1063/1.3701614 CrossRefGoogle Scholar
  6. 6.
    Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92(18):186601–186603. doi: 10.1103/PhysRevLett.92.186601 CrossRefGoogle Scholar
  7. 7.
    Lopatin S, Duscher G, Pennycook SJ, Chisholm MF (2002) Z-contrast imaging and EELS of dislocation cores at the Si/GaAs interface. Appl Phys Lett 81(15):2728–2730. doi: 10.1063/1.1511808 CrossRefGoogle Scholar
  8. 8.
    Haugan HJ, Brown GJ, Elhamri S, Grazulis L (2015) Control of anion incorporation in the molecular beam epitaxy of ternary antimonide superlattices for very long wavelength infrared detection. J Cryst Growth 425:25–28. doi: 10.1016/j.jcrysgro.2015.03.008 CrossRefGoogle Scholar
  9. 9.
    Wang W, Gan X, Xu Y, Wang T, Wu H, Liu C (2015) High-quality n-type aluminum gallium nitride thin films grown by interrupted deposition and in situ thermal annealing. Mater Sci Semicond Process 30:612–617. doi: 10.1016/j.mssp.2014.11.010 CrossRefGoogle Scholar
  10. 10.
    Balakrishnan G, Tatebayashi J, Khoshakhlagh A, Huang SH, Jallipalli A, Dawson LR, Huffaker DL (2006) III/V ratio based selectivity between strained Stranski–Krastanov and strain-free GaSb quantum dots on GaAs. Appl Phys Lett 89(16):161104. doi: 10.1063/1.2362999 CrossRefGoogle Scholar
  11. 11.
    Hÿtch MJ, Snoeck E, Kilaas R (1998) Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74(3):131–146. doi: 10.1016/S0304-3991(98)00035-7 CrossRefGoogle Scholar
  12. 12.
    Molina SI, Sales DL, Galindo PL, Fuster D, González Y, Alén B, González L, Varela M, Pennycook SJ (2008) Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy 109:172–176. doi: 10.1016/j.ultramic.2008.10.008 CrossRefGoogle Scholar
  13. 13.
    Rudinsky ME, Karpov SY, Lipsanen H, Romanov AE (2015) Critical thickness and bow of pseudomorphic InxGa1-xAs-based laser heterostructures grown on (001)GaAs and (001)InP substrates. Mater Phys Mech 24(3):278–283. doi: 10.1134/S1063782613090054 Google Scholar
  14. 14.
    Bickel JE, Millunchick JM (2014) The impact of the initial surface reconstruction on heteroepitaxial film growth and defect formation. Phys Scr 89(7):075707–075708. doi: 10.1088/0031-8949/89/7/075707 CrossRefGoogle Scholar
  15. 15.
    Kim TW, Lee DU, Lee HS, Lee JY, Park HL (2001) Strain effects and atomic arrangements of 60° and 90° dislocations near the ZnTe/GaAs heterointerface. Appl Phys Lett 78(10):1409–1411. doi: 10.1063/1.1349866 CrossRefGoogle Scholar
  16. 16.
    Noh YK, Hwang YJ, Kim MD, Kwon YJ, Oh JE, Kim YH, Lee JY (2007) Strucrural properties of GaSb layers grown on InAs, AlSb, and GaSb buffer layers on GaAs (001) substrates. J Korean Phys Soc 50(6):1929–1932. doi: 10.3938/jkps.50.1929 CrossRefGoogle Scholar
  17. 17.
    Kim YH, Lee JY, Noh YG, Kim MD, Oh JE (2007) High-resolution transmission electron microscopy study on the growth modes of GaSb islands grown on a semi-insulating GaAs (001) substrate. Appl Phys Lett 90(24):241915. doi: 10.1063/1.2747674 CrossRefGoogle Scholar
  18. 18.
    Fazouan N, Atmani E, El Kasri F, Rouhani MD, Esteve A (2011) Interface structure of deposited GaSb on GaAs (001): monte Carlo simulation and experimental study. J Mater Sci 47(4):1684–1689. doi: 10.1007/s10853-011-6018-2 CrossRefGoogle Scholar
  19. 19.
    Mahalingam K, Haugan HJ, Brown GJ, Eyink KG (2013) Quantitative analysis of interfacial strain in InAs/GaSb superlattices by aberration-corrected HRTEM and HAADF-STEM. Ultramicroscopy 127:70–75. doi: 10.1016/j.ultramic.2012.09.005 CrossRefGoogle Scholar
  20. 20.
    Wang Y, Ruterana P, Chen J, Kret S, El Kazzi S, Genevois C, Desplanque L, Wallart X (2013) Antimony-mediated control of misfit dislocations and strain at the highly lattice mismatched GaSb/GaAs interface. ACS Appl Mater Interfaces 5(19):9760–9764. doi: 10.1021/am4028907 CrossRefGoogle Scholar
  21. 21.
    Huang SH, Balakrishnan G, Khoshakhlagh A, Jallipalli A, Dawson LR, Huffaker DL (2006) Strain relief by periodic misfit arrays for low defect density GaSb on GaAs. Appl Phys Lett 88(13):131911–131913. doi: 10.1063/1.2172742 CrossRefGoogle Scholar
  22. 22.
    Jallipalli A, Balakrishnan G, Huang SH, Khoshakhlagh A, Dawson LR, Huffaker DL (2007) Atomistic modeling of strain distribution in self-assembled interfacial misfit dislocation (IMF) arrays in highly mismatched III–V semiconductor materials. J Cryst Growth 303(2):449–455. doi: 10.1016/j.jcrysgro.2006.12.032 CrossRefGoogle Scholar
  23. 23.
    Silveira JP, Briones F (1999) In situ observation of reconstruction related surface stress during molecular beam epitaxy (MBE) growth of III–V compounds. J Cryst Growth 201–202:113–117. doi: 10.1016/S0022-0248(98)01301-3 CrossRefGoogle Scholar
  24. 24.
    Suzuki K, Hogg RA, Arakawa Y (1999) Structural and optical properties of type II GaSb/GaAs self-assembled quantum dots grown by molecular beam epitaxy. J Appl Phys 85(12):8349–8352. doi: 10.1063/1.370622 CrossRefGoogle Scholar
  25. 25.
    Matthews JW, Blakeslee AE (1974) Defects in epitaxial multilayers: i. misfit dislocations. J Cryst Growth 27:118–125. doi: 10.1016/S0022-0248(74)80055-2 Google Scholar
  26. 26.
    Fu K, Fu Y (2009) Strain-induced Stranski–Krastanov three-dimensional growth mode of GaSb quantum dot on GaAs substrate. Appl Phys Lett 94(18):181913. doi: 10.1063/1.3132054 CrossRefGoogle Scholar
  27. 27.
    He XQ, Wen C, Duan XF, Chen H (2011) Identification of atomic steps at AlSb/GaAs hetero-epitaxial interface using geometric phase method by high-resolution electron microscopy. Mater Lett 65(3):456–459. doi: 10.1016/j.matlet.2010.10.054 CrossRefGoogle Scholar
  28. 28.
    Hÿtch MJ, Putaux JL, Pénisson JM (2003) Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423(6937):270–273. doi: 10.1038/nature01638 CrossRefGoogle Scholar
  29. 29.
    Vajargah SH, Couillard M, Cui K, Tavakoli SG, Robinson B, Kleiman RN, Preston JS, Botton GA (2011) Strain relief and AlSb buffer layer morphology in GaSb heteroepitaxial films grown on Si as revealed by high-angle annular dark-field scanning transmission electron microscopy. Appl Phys Lett 98(8):082113. doi: 10.1063/1.3551626 CrossRefGoogle Scholar
  30. 30.
    Zhou W, Tang W, Lau KM (2011) A strain relief mode at interface of GaSb/GaAs grown by metalorganic chemical vapor deposition. Appl Phys Lett 99(22):221917. doi: 10.1063/1.3663571 CrossRefGoogle Scholar
  31. 31.
    Hernández-Saz J, Herrera M, Molina SI, Stanley CR, Duguay S (2015) 3D compositional analysis at atomic scale of InAlGaAs capped InAs/GaAs QDs. Scr Mater 103:73–76. doi: 10.1016/j.scriptamat.2015.03.013 CrossRefGoogle Scholar
  32. 32.
    Li L, Liu G-j, Wang Y, Li M (2005) GaSb film growth on GaAs substrate by MBE. In: Source of the document proceedings of SPIE—The international society for optical engineering. 602038. doi: 10.1117/12.635146
  33. 33.
    Huang S, Balakrishnan G, Huffaker DL (2009) Interfacial misfit array formation for GaSb growth on GaAs. J Appl Phys 105(10):103104–103105. doi: 10.1063/1.3129562 CrossRefGoogle Scholar
  34. 34.
    Mallard RE, Wilshaw PR, Mason NJ, Walker PJ, Booker GR (1989) Lattice-relaxation of strained GaSb GaAs epitaxial layers grown by MOCVD. In: Institute of physics conference series, pp 331–336. http://ora.ox.ac.uk/objects/uuid:a73bbcb1-5119-4fbf-93c8-6ca6ecf1e733
  35. 35.
    Kim JH, Seong TY, Mason NJ, Walker PJ (1998) Morphology and defect structures of GaSb islands on GaAs grown by metalorganic vapor phase epitaxy. J Electron Mater 27(5):466–471. doi: 10.1007/s11664-998-0178-0 CrossRefGoogle Scholar
  36. 36.
    Matthews JW, Blakeslee AE (1974) Defects in epitaxial multilayers: I. misfit dislocations. J Cryst Growth 27(C):118–125. doi: 10.1016/S0022-0248(74)80055-2 Google Scholar
  37. 37.
    Patel RK, Sanchez A, Ashwin MJ, Jones TS, Beanland R (2012) Relaxation mechanisms of InSb/GaSb quantum dots. In: 15th European Microscopy Congress: 0907. http://www.emc2012.org.uk//documents/Abstracts/Abstracts/EMC2012_0907.pdf
  38. 38.
    Lozano JG, Sánchez AM, García R, González D, Herrera M, Browning ND, Ruffenach S, Briot O (2007) Configuration of the misfit dislocation networks in uncapped and capped InN quantum dots. Appl Phys Lett 91(7):071915. doi: 10.1063/1.2770776 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. Fernández-Delgado
    • 1
  • M. Herrera
    • 1
  • M. F. Chisholm
    • 2
  • M. A. Kamarudin
    • 3
    • 4
  • Q. D. Zhuang
    • 3
  • M. Hayne
    • 3
  • S. I. Molina
    • 1
  1. 1.Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, IMEYMATUniversity of CádizCádizSpain
  2. 2.Scanning Transmission Electron Microscopy GroupOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Department of PhysicsLancaster UniversityLancasterUK
  4. 4.Department of Physics, Faculty of ScienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations