Journal of Materials Science

, Volume 51, Issue 16, pp 7652–7659 | Cite as

Impact of fullerene loading on the structure and transport properties of polysulfone mixed-matrix membranes

  • Anastasia V. Penkova
  • Maria E. Dmitrenko
  • Maria P. Sokolova
  • Banghao Chen
  • Tatiana V. Plisko
  • Denis A. Markelov
  • Sergei S. Ermakov
Original Paper


Novel mixed-matrix membranes based on polysulfone (PS) and fullerene C60 (up to 5 wt%) have been developed. Two membrane types formed from PS and PS-C60, a dense (diffusive) membrane and a supported membrane, consisted of a thin PS or PS-C60 selective layer (≈5 μm) on the surface of hydrophobic fluorocarbon polymer porous support (MFFC) were studied. The effect of fullerene incorporation on the structure and physical and chemical properties of PS membranes were investigated by scanning electron microscopy, nuclear magnetic resonance, contact angle measurements, sorption experiments, and wide-angle X-ray diffraction. The transport properties of the mixed matrix membranes containing up to 0.5 wt% fullerene were studied for the pervaporation of ethyl acetate–water mixture. The new mixed-matrix membranes, developed in this study, were selective to water, whereas the PS-0.5 % C60/MFFC composite membrane was found to have the best performance.


Contact Angle Ethyl Acetate Fullerene Composite Membrane Pervaporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful and acknowledge Grants from RFBR No. 15-58-04034 (A.V. Penkova); Grants from St. Petersburg State University (No. 12.50.1195.2014 (M.P. Sokolova), 12.42.1392.2015 (M.E. Dmitrenko); the Government of the Russian Federation Grant 074-U01 (D.A. Markelov). The experimental work was facilitated on the equipment of the Resource Center of X-ray diffraction studies and GEOMODEL, Interdisciplinary Resource center for Nanotechnology at St. Petersburg State University.


  1. 1.
    Goh PS, Ismail AF (2015) Review: is interplay between nanomaterial and membrane technology the way forward for desalination? J Chem Technol Biotechnol 90:971–980. doi: 10.1002/jctb.4531 CrossRefGoogle Scholar
  2. 2.
    Goh PS, Ismail AF, Sanip SM et al (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 81:243–264. doi: 10.1016/j.seppur.2011.07.042 CrossRefGoogle Scholar
  3. 3.
    Hoek EMV, Ghosh AK, Huang X et al (2011) Physical-chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes. Desalination 283:89–99. doi: 10.1016/j.desal.2011.04.008 CrossRefGoogle Scholar
  4. 4.
    Yu J, Li L, Liu N, Lee R (2013) An approach to prepare defect-free PES/MFI-type zeolite mixed matrix membranes for CO2/N2 separation. J Mater Sci 48:3782–3788. doi: 10.1007/s10853-013-7178-z CrossRefGoogle Scholar
  5. 5.
    Garca MG, Marchese J, Ochoa NA (2012) High activated carbon loading mixed matrix membranes for gas separations. J Mater Sci 47:3064–3075. doi: 10.1007/s10853-011-6138-8 CrossRefGoogle Scholar
  6. 6.
    Diallo MS, Duncan JS, Savage N et al (2014) Nanotechnology solutions for improving water quality. solutions for improving water quality a volume in micro and nano technologies. Nanotechnol Appl Clean Water. doi: 10.1016/B978-1-4557-3116-9.00042-1 Google Scholar
  7. 7.
    Cheryan M (1998) Ultrafiltration and microfiltration handbook. CRC press, Boca RatonGoogle Scholar
  8. 8.
    Chakrabarty B, Ak Ghoshal, Purkait MK (2008) SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive. J Colloid Interface Sci 320:245–253. doi: 10.1016/j.jcis.2008.01.002 CrossRefGoogle Scholar
  9. 9.
    Ohya H, Shiki S, Kawakami H (2009) Fabrication study of polysulfone hollow-fiber microfiltration membranes: optimal dope viscosity for nucleation and growth. J Memb Sci 326:293–302. doi: 10.1016/j.memsci.2008.10.001 CrossRefGoogle Scholar
  10. 10.
    Chen SH, Liou RM, Lai CL et al (2008) Embedded nano-iron polysulfone membrane for dehydration of the ethanol/water mixtures by pervaporation. Desalination 234:221–231. doi: 10.1016/j.desal.2007.09.089 CrossRefGoogle Scholar
  11. 11.
    Hunger K, Schmeling N, Jeazet HBT et al (2012) Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes 2:727–763. doi: 10.3390/membranes2040727 (Basel) CrossRefGoogle Scholar
  12. 12.
    Ismail AF, Goh PS, Sanip SM, Aziz M (2009) Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep Purif Technol 70:12–26. doi: 10.1016/j.seppur.2009.09.002 CrossRefGoogle Scholar
  13. 13.
    Wang N, Ji S, Li J et al (2014) Poly(vinyl alcohol)-graphene oxide nanohybrid “pore-filling” membrane for pervaporation of toluene/n-heptane mixtures. J Memb Sci 455:113–120. doi: 10.1016/j.memsci.2013.12.023 CrossRefGoogle Scholar
  14. 14.
    Wang T, Shen J-N, Wu L-G, Bruggen BVD (2014) Improvement in the permeation performance of hybrid membranes by the incorporation of functional multi-walled carbon nanotubes. J Memb Sci 466:338–347. doi: 10.1016/j.memsci.2014.04.054 CrossRefGoogle Scholar
  15. 15.
    Yeang QW, Zein SHS, Sulong AB, Tan SH (2013) Comparison of the pervaporation performance of various types of carbon nanotube-based nanocomposites in the dehydration of acetone. Sep Purif Technol 107:252–263. doi: 10.1016/j.seppur.2013.01.031 CrossRefGoogle Scholar
  16. 16.
    Polotskaya GA, Penkova AV, Toikka AM et al (2007) Transport of small molecules through polyphenylene oxide membranes modified by fullerene. Sep Sci Technol 42:333–347. doi: 10.1080/01496390600997963 CrossRefGoogle Scholar
  17. 17.
    Jin X, Hu JY, Tint ML et al (2007) Estrogenic compounds removal by fullerene-containing membranes. Desalination 214:83–90. doi: 10.1016/j.desal.2006.10.019 CrossRefGoogle Scholar
  18. 18.
    Sudareva NN, Penkova AV, Kostereva TA et al (2012) Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites. Expr Polym Lett 6:178–188. doi: 10.3144/expresspolymlett.2012.20 CrossRefGoogle Scholar
  19. 19.
    Polotskaya GA, Penkova AV, Pientka Z, Am Toikka (2012) Polymer membranes modified by fullerene C60 for pervaporation of organic mixtures. Desalin Water Treat 14:83–88. doi: 10.5004/dwt.2010.1528 CrossRefGoogle Scholar
  20. 20.
    Taurozzi JS, Crock CA, Tarabara VV (2011) C60-polysulfone nanocomposite membranes: entropic and enthalpic determinants of C60 aggregation and its effects on membrane properties. Desalination 269:111–119. doi: 10.1016/j.desal.2010.10.049 CrossRefGoogle Scholar
  21. 21.
    Martin JW (2006) Concise encyclopedia of the structure of materials. Elsevier, PhiladelphiaGoogle Scholar
  22. 22.
    Stephens PW (1994) Physics and chemistry of fullerenes. World Scientific, SingaporeGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anastasia V. Penkova
    • 1
  • Maria E. Dmitrenko
    • 1
  • Maria P. Sokolova
    • 1
  • Banghao Chen
    • 2
  • Tatiana V. Plisko
    • 3
  • Denis A. Markelov
    • 1
    • 4
  • Sergei S. Ermakov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Department of Chemistry and BiochemistryThe Florida State UniversityTallahasseeUSA
  3. 3.Institute of Physical Organic Chemistry of the National Academy of Sciences of BelarusMinskBelarus
  4. 4.St. Petersburg National Research University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations