Advertisement

Journal of Materials Science

, Volume 51, Issue 16, pp 7624–7635 | Cite as

Synthesis and properties of graphene and graphene/carbon nanotube-reinforced soft magnetic FeCo alloy composites by spark plasma sintering

  • Amar J. AlbaajiEmail author
  • Elinor G. Castle
  • Mike J. Reece
  • Jeremy P. Hall
  • Sam L. Evans
Original Paper

Abstract

The effect of the addition of graphene nanoplatelets (GNP) and graphene nanoplatelet/carbon nanotube (GNT) mixtures on the mechanical and magnetic properties of spark plasma sintered soft magnetic FeCo alloys was studied. Three different volume fractions (0.5, 1 and 2 vol%) of GNPs and GNTs were investigated. Ball milling was used to disperse the GNPs in monolithic FeCo powder, while magnetic stirring and ultrasonic agitation were used to prepare hybrid GNT prior to ball milling. The highest saturation induction (B sat) of 2.39 T was observed in the 1 vol% GNP composite. An increase in the volume fraction of the ordered nanocrystalline structure was found to reduce the coercivity (H c) of the composites. The addition of CNTs to the GNP composite prevented grain growth, leading to grain refinement. An 18 % increase in hardness was observed in the 1 vol% GNP composite as compared to the as-received FeCo alloy. A reduction in tensile strength was observed in all of the composite materials, except for the 0.5 vol% GNT composite, for which a value of 643 MPa was observed. Raman spectroscopy indicated a reduction in the defect density of the GNPs after adding CNTs.

Keywords

Graphene Oxide Ball Milling Spark Plasma Sinter Failure Strain Graphene Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530. doi: 10.1021/ma100572e CrossRefGoogle Scholar
  2. 2.
    Tjong SC (2013) Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng Rep 74:281–350. doi: 10.1016/j.mser.2013.08.001 CrossRefGoogle Scholar
  3. 3.
    Chen LY, Konishi H, Fehrenbacher A, Ma C, Xu JQ, Choi H, Xu HF, Pfefferkorn FE, Li XC (2012) Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr Mater 67:29. doi: 10.1016/j.scriptamat.2012.03.013 CrossRefGoogle Scholar
  4. 4.
    Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686. doi: 10.1039/c1cs15078b CrossRefGoogle Scholar
  5. 5.
    Wu ZS, Zhou GM, Yin LC, Ren W, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107. doi: 10.1016/j.nanoen.2011.11.001 CrossRefGoogle Scholar
  6. 6.
    Matsuda M, Yamashita K, Sago R, Akamine K, Takashima K, Nishida M (2012) Development of ductile B2-Type FeCo based alloys. Mater Trans 53:1826. doi: 10.2320/matertrans.M2012205 CrossRefGoogle Scholar
  7. 7.
    Kawahara K, Uehara M (1984) A possibility for developing high strength soft magnetic materials in FeCo-X alloys. J Mater Sci 19:2575–2581. doi: 10.1007/Bf00550812 CrossRefGoogle Scholar
  8. 8.
    Kawahara K (1983) Effect of carbon on mechanical properties in Fe0·5Co0·5 alloys. J Mater Sci 18:2047–2055. doi: 10.1007/BF00554997 CrossRefGoogle Scholar
  9. 9.
    Yu RH, Ren L, Basu S, Unruh KM, Parvizi-Majidi A, Xiao JQ (2000) Novel soft magnetic composites fabricated by electrodeposition. J Appl Phys 87:5840–5842. doi: 10.1063/1.372540 CrossRefGoogle Scholar
  10. 10.
    Turgut Z, Huang M, Horwath JC, Fingers RT (2008) High strength bulk Fe–Co alloys produced by powder metallurgy. J Appl Phys 131–134:07E724. doi: 10.1063/1.2838466 Google Scholar
  11. 11.
    Rutz HG, Hanejko FG (1994) High density processing of high performance ferrous materials. In: International conference & exhibition on powder metallurgy & particulate material, TorontoGoogle Scholar
  12. 12.
    Xu CY, Jia SS, Cao ZY (2005) Synthesis of Al–Mn–Ce alloy by the spark plasma sintering. Mater Charact 54:394–398. doi: 10.1016/j.matchar.2004.12.006 CrossRefGoogle Scholar
  13. 13.
    Groza JR, Garcia M, Schneider JA (2001) Surface effects in field-assisted sintering. J Mater Res 16:286–292. doi: 10.1557/Jmr.2001.0043 CrossRefGoogle Scholar
  14. 14.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. doi: 10.1007/s10853-006-6555-2 CrossRefGoogle Scholar
  15. 15.
    Mani MK, Viola G, Reece MJ, Hall JP, Evans SL (2013) Structural and magnetic characterization of spark plasma sintered Fe-50Co alloys. In: MRS proceedings, vol 1516. Cambridge University Press, Cambridge, pp 201–207. doi:  10.1557/opl.2012
  16. 16.
    Mani MK, Viola G, Reece MJ, Hall JP, Evans SL (2014) Improvement of interfacial bonding in carbon nanotube reinforced Fe–50Co composites by Ni–P coating: effect on magnetic and mechanical properties. Mater Sci Eng B 188:94–101. doi: 10.1016/j.mseb.2014.06.009 CrossRefGoogle Scholar
  17. 17.
    Mani MK, Viola G, Hall JP, Grasso S, Reece MJ (2015) Observation of Curie transition during spark plasma sintering of ferromagnetic materials. J Magn Magn Mater 382:202–205. doi: 10.1016/j.jmmm.2015.01.066 CrossRefGoogle Scholar
  18. 18.
    Porwal H, Grasso S, Reece MJ (2014) Review of graphene–ceramic matrix composites. Adv Appl Ceram 112:443. doi: 10.1179/174367613x13764308970581 CrossRefGoogle Scholar
  19. 19.
    Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J (2010) Graphene oxide sheets at interfaces. J Am Chem Soc 132:8180–8186. doi: 10.1021/ja102777p CrossRefGoogle Scholar
  20. 20.
    Wimalasiri Y, Zou LD (2013) Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–471. doi: 10.1016/j.carbon.2013.03.040 CrossRefGoogle Scholar
  21. 21.
    Yazdani B, Porwal H, Xia YD, Yan HX, Reece MJ, Zhu YQ (2015) Role of synthesis method on microstructure and mechanical properties of graphene/carbon nanotube toughened Al2O3 nanocomposites. Ceram Int 41:9813–9822. doi: 10.1016/j.ceramint.2015.04.054 CrossRefGoogle Scholar
  22. 22.
    Yazdani B, Xia YD, Ahmad I, Zhu YQ (2015) Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc 35:179–186. doi: 10.1016/j.jeurceramsoc.2014.08.043 CrossRefGoogle Scholar
  23. 23.
    Wang PN, Hsieh TH, Chiang CL, Shen MY (2015) Synergetic effects of mechanical properties on graphene nanoplatelet and multiwalled carbon nanotube hybrids reinforced epoxy/carbon fiber composites. J Nanomater 2015:1–9Google Scholar
  24. 24.
    Rashad M, Pan FS, Tang AT, Asif M, Aamir M (2014) Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J Alloy Compd 603:111–118. doi: 10.1016/j.jallcom.2014.03.038 CrossRefGoogle Scholar
  25. 25.
    Dieter GE (1986) Mechanical metallurgy, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Anderson P (2008) A universal DC characterisation system for hard and soft magnetic materials. J Magn Magn Mater 320:589–593. doi: 10.1016/j.jmmm.2008.04.034 CrossRefGoogle Scholar
  27. 27.
    Mani MK, Viola G, Reece MJ, Hall JP, Evans SL (2014) Fabrication of carbon nanotube reinforced iron based magnetic alloy composites by spark plasma sintering. J Alloy Compd 601:146–153. doi: 10.1016/j.jallcom.2014.02.169 CrossRefGoogle Scholar
  28. 28.
    Clegg DW, Buckley RA (1973) The disorder → order transformation in iron–cobalt-based alloys. Met Sci 7:48–54CrossRefGoogle Scholar
  29. 29.
    Sahoo PK, Panigrahy B, Li D, Bahadur D (2013) Magnetic behavior of reduced graphene oxide/metal nanocomposites. J Appl Phys 113:17B525. doi: 10.1063/1.4799150 Google Scholar
  30. 30.
    Yuan BQ, Yu LM, Sheng LM, An K, Zhao XL (2012) Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J Phys D Appl Phys 45(23):1–6. doi: 10.1088/0022-3727/45/23/235108 CrossRefGoogle Scholar
  31. 31.
    Enoki T, Kobayashi Y (2005) Magnetic nanographite: an approach to molecular magnetism. J Mater Chem 15:3999–4002. doi: 10.1039/b500274p CrossRefGoogle Scholar
  32. 32.
    Hug E, Hubert O, Guillot I (2000) Effect of strengthening on the magnetic behaviour of ordered intermetallic 2 % V-CoFe alloys. J Magn Magn Mater 215:197–200CrossRefGoogle Scholar
  33. 33.
    Herzer G (1990) Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans Magn 26:1397–1402CrossRefGoogle Scholar
  34. 34.
    Wu HQ, Xu DM, Wang Q, Yao YZ, Wang QY, Su GQ (2008) Effect of heat treatment on structure and magnetic properties of FeCoNi/CNTs nanocomposites. Bull Mater Sci 31:801–806CrossRefGoogle Scholar
  35. 35.
    Rao CN, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed Engl 48(42):7752–7777. doi: 10.1002/anie.200901678 CrossRefGoogle Scholar
  36. 36.
    Bastwros M, Kim GY, Zhu C, Zhang K, Wang S, Tang X, Wang X (2014) Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos Part B Eng 60:111–118. doi: 10.1016/j.compositesb.2013.12.043 CrossRefGoogle Scholar
  37. 37.
    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(1–4):187401. doi: 10.1103/PhysRevLett.97.187401 CrossRefGoogle Scholar
  38. 38.
    Inam F, Yan H, Reece MJ, Peijs T (2010) Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite. Adv Appl Ceram 109(4):240–247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Amar J. Albaaji
    • 1
    Email author
  • Elinor G. Castle
    • 2
    • 3
  • Mike J. Reece
    • 2
    • 3
  • Jeremy P. Hall
    • 1
  • Sam L. Evans
    • 4
  1. 1.Cardiff School of Engineering, Wolfson Centre for MagneticsCardiff UniversityCardiffUK
  2. 2.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK
  3. 3.Nanoforce Technology Ltd.LondonUK
  4. 4.Cardiff School of Engineering, Institute of Mechanical and Manufacturing EngineeringCardiff UniversityCardiffUK

Personalised recommendations