Journal of Materials Science

, Volume 51, Issue 8, pp 3989–4001 | Cite as

CeO2 and Co3O4–CeO2 nanoparticles: effect of the synthesis method on the structure and catalytic properties in COPrOx and methanation reactions

  • Leonardo F. Peiretti
  • Nuria Navascués
  • Inés S. Tiscornia
  • Eduardo E. Miró
Original Paper


CeO2 and Co3O4–CeO2 nanoparticles were synthesized, thoroughly characterized, and evaluated in the COPrOx reaction. The CeO2 nanoparticles were synthesized by the diffusion-controlled precipitation method with ethylene glycol. A notably higher yield was obtained when H2O2 was used in the synthesis procedure. For comparison, two commercial samples of CeO2 nanoparticles (Nyacol®)—one calcined and the other sintered—were also studied. Catalytic results of bare CeO2 calcined at 500 °C showed a strong influence of the method of synthesis. Despite having similar BET area values, the CeO2 synthesized without H2O2 was the most active sample. Co3O4–CeO2 catalysts with three different Co/(Co + Ce) atomic ratios, 0.1, 0.3, and 0.5, were prepared by the wet impregnation of the CeO2 nanoparticles. TEM and STEM observations showed that impregnation produced mixed oxides composed of small CeO2 nanoparticles located both over the surface and inside the Co3O4 crystals. The mixed oxide catalysts prepared with a cobalt atomic ratio of 0.5 showed methane formation, which started at 200 °C due to the reaction between CO2 and H2. However, above 250 °C, the reaction between CO and H2 became important, thus contributing to CO elimination with a small H2 loss. As a result, CO could be totally eliminated in a wide temperature range, from 200 to 400 °C. The methanation reaction was favored by the reduction of the cobalt oxide, as suggested by the TPR experiments. This result is probably originated in Ce–Co interactions, related to the method of synthesis and the surface area of the mixed oxides obtained.


CeO2 Co3O4 Temperature Program Reduction Methanation Reaction Temperature Program Reduction Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the financial support received from UNL, ANPCyT, and CONICET. Thanks are given to María Fernanda Mori for the XPS measurements and to Esther María Fixman for the BET measurements and her advice on the technique.

Supplementary material

10853_2015_9717_MOESM1_ESM.docx (5.5 mb)
Supplementary material 1 (DOCX 5589 kb)


  1. 1.
    Adams FC, Barbante C (2013) Nanoscience, nanotechnology and spectrometry. Spectrochim Acta Part B 86:3–13. doi: 10.1016/j.sab.2013.04.008 CrossRefGoogle Scholar
  2. 2.
    Mangematin V, Walsh S (2012) The future of nanotechnologies. Technovation 32:157–160. doi: 10.1016/j.technovation.2012.01.003 CrossRefGoogle Scholar
  3. 3.
    Bion N, Epron F, Moreno M, Mariño F, Duprez D (2008) Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks. Top Catal 51:76–88. doi: 10.1007/s11244-008-9116-x CrossRefGoogle Scholar
  4. 4.
    Wootsch A (2004) Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria-zirconia and alumina-supported Pt catalysts. J Catal 225:259–266. doi: 10.1016/j.jcat.2004.04.017 CrossRefGoogle Scholar
  5. 5.
    Xu G, Chen X, Zhang Z-G (2006) Temperature-staged methanation: an alternative method to purify hydrogen-rich fuel gas for PEFC. Chem Eng J 121:97–107. doi: 10.1016/j.cej.2006.05.010 CrossRefGoogle Scholar
  6. 6.
    Xu G, Zhang Z-G (2006) Preferential CO oxidation on Ru/Al2O3 catalyst: an investigation by considering the simultaneously involved methanation. J Power Sources 157:64–77. doi: 10.1016/j.jpowsour.2005.07.028 CrossRefGoogle Scholar
  7. 7.
    Lawrence NJ, Brewer JR, Wang L et al (2011) Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. Nano Lett 11:2666–2671. doi: 10.1021/nl200722z CrossRefGoogle Scholar
  8. 8.
    Peiretti LF, Tiscornia IS, Miró EE (2013) Study of the synthesis of CeO2 nanoparticles for their use in CO preferential oxidation (COPrOx). Chem Eng J 223:507–515. doi: 10.1016/j.cej.2013.02.121 CrossRefGoogle Scholar
  9. 9.
    Gómez LE, Tiscornia IS, Boix AV, Miró EE (2012) CO preferential oxidation on cordierite monoliths coated with Co/CeO2 catalysts. Int J Hydrog Energy 37:14812–14819. doi: 10.1016/j.ijhydene.2012.01.159 CrossRefGoogle Scholar
  10. 10.
    Gómez-Cuaspud JA, Schmal M (2013) Nanostructured metal oxides obtained by means polymerization-combustion at low temperature for CO selective oxidation. Int J Hydrog Energy 38:7458–7468. doi: 10.1016/j.ijhydene.2013.04.024 CrossRefGoogle Scholar
  11. 11.
    Woods MP, Gawade P, Tan B, Ozkan US (2010) Preferential oxidation of carbon monoxide on Co/CeO2 nanoparticles. Appl Catal B 97:28–35. doi: 10.1016/j.apcatb.2010.03.015 CrossRefGoogle Scholar
  12. 12.
    Konysheva EY, Francis SM (2013) Identification of surface composition and chemical states in composites comprised of phases with fluorite and perovskite structures by X-ray photoelectron spectroscopy. Appl Surf Sci 268:278–287. doi: 10.1016/j.apsusc.2012.12.079 CrossRefGoogle Scholar
  13. 13.
    Fang J, Bi X, Si D, Jiang Z, Huang W (2007) Spectroscopic studies of interfacial structures of CeO2–TiO2 mixed oxides. Appl Surf Sci 253:8952–8961. doi: 10.1016/j.apsusc.2007.05.013 CrossRefGoogle Scholar
  14. 14.
    Poggio E, Jobbágy M, Moreno M, Laborde M, Mariño F, Baronetti G (2011) Influence of the calcination temperature on the structure and reducibility of nanoceria obtained from crystalline Ce(OH)CO3 precursor. Int J Hydrog Energy 36:15899–15905. doi: 10.1016/j.ijhydene.2011.09.026 CrossRefGoogle Scholar
  15. 15.
    Bourja L, Bakiz B, Benlhachemi A et al (2012) Structural modifications of nanostructured ceria CeO2, xH2O during dehydration process. Powder Technol 215–216:66–71. doi: 10.1016/j.powtec.2011.09.008 CrossRefGoogle Scholar
  16. 16.
    Rios E, Nguyen-Cong H, Marco JF, Gancedo JR, Chartier P, Gautier JL (2000) Indirect oxidation of ethylene glycol by peroxide ions at Ni0.3Co2.7O4 spinel oxide thin film electrodes. Electrochim Acta 45:4431–4440. doi: 10.1016/S0013-4686(00)00498-9 CrossRefGoogle Scholar
  17. 17.
    Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38:439–520. doi: 10.1080/01614949608006464 CrossRefGoogle Scholar
  18. 18.
    Larachi F, Pierre J, Adnot A, Bernis A (2002) Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl Surf Sci 195:236–250. doi: 10.1016/s0169-4332(02)00559-7 CrossRefGoogle Scholar
  19. 19.
    Rebellato J, Natile MM, Glisenti A (2008) Influence of the synthesis procedure on the properties and reactivity of nanostructured ceria powders. Appl Catal A 339:108–120. doi: 10.1016/j.apcata.2007.12.031 CrossRefGoogle Scholar
  20. 20.
    Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051 CrossRefGoogle Scholar
  21. 21.
    Chuang TJ, Brundle CR, Rice DW (1976) Interpretation of the X-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf Sci 59:413–429. doi: 10.1016/0039-6028(76)90026-1 CrossRefGoogle Scholar
  22. 22.
    Stoch J, Gablankowska-Kukucz J (1991) The effect of carbonate contaminations on the XPS O 1 s band structure in metal oxides. Surf Interface Anal 17:165–167. doi: 10.1002/sia.740170308 CrossRefGoogle Scholar
  23. 23.
    Damyanova S, Perez CA, Schmal M, Bueno JMC (2002) Characterization of ceria-coated alumina carrier. Appl Catal A 234:271–282. doi: 10.1016/s0926-860x(02)00233-8 CrossRefGoogle Scholar
  24. 24.
    Katta L, Sudarsanam P, Thrimurthulu G, Reddy BM (2010) Doped nanosized ceria solid solutions for low temperature soot oxidation: zirconium versus lanthanum promoters. Appl Catal B 101:101–108. doi: 10.1016/j.apcatb.2010.09.012 CrossRefGoogle Scholar
  25. 25.
    Marrero-Jerez J, Larrondo S, Rodríguez-Castellón E, Núñez P (2014) TPR, XRD and XPS characterisation of ceria-based materials synthesized by freeze-drying precursor method. Ceram Int 40:6807–6814. doi: 10.1016/j.ceramint.2013.11.143 CrossRefGoogle Scholar
  26. 26.
    Deeprasertkul C, Longloilert R, Chaisuwan T, Wongkasemjit S (2014) Impressive low reduction temperature of synthesized mesoporous ceria via nanocasting. Mater Lett 130:218–222. doi: 10.1016/j.matlet.2014.05.124 CrossRefGoogle Scholar
  27. 27.
    Razeghi A, Khodadadi A, Ziaei-Azad H, Mortazavi Y (2010) Activity enhancement of Cu-doped ceria by reductive regeneration of CuO–CeO2 catalyst for preferential oxidation of CO in H2-rich streams. Chem Eng J 164:214–220. doi: 10.1016/j.cej.2010.07.064 CrossRefGoogle Scholar
  28. 28.
    Chen Y, Liu D, Yang L et al (2013) Ternary composite oxide catalysts CuO/Co3O4–CeO2 with wide temperature-window for the preferential oxidation of CO in H2-rich stream. Chem Eng J 234:88–98. doi: 10.1016/j.cej.2013.08.063 CrossRefGoogle Scholar
  29. 29.
    Konsolakis M, Sgourakis M, Carabineiro SAC (2015) Surface and redox properties of cobalt-ceria binary oxides: on the effect of Co content and pretreatment conditions. Appl Surf Sci. doi: 10.1016/j.apsusc.2015.02.188 Google Scholar
  30. 30.
    Ko E-Y, Park ED, Seo KW, Lee HC, Lee D, Kim S (2006) A comparative study of catalysts for the preferential CO oxidation in excess hydrogen. Catal Today 116:377–383. doi: 10.1016/j.cattod.2006.05.072 CrossRefGoogle Scholar
  31. 31.
    Marbán G, López I, Valdés-Solís T, Fuertes AB (2008) Highly active structured catalyst made up of mesoporous Co3O4 nanowires supported on a metal wire mesh for the preferential oxidation of CO. Int J Hydrog Energy 33:6687–6695. doi: 10.1016/j.ijhydene.2008.07.067 CrossRefGoogle Scholar
  32. 32.
    Lin H-K, Chiu H-C, Tsai H-C, Chien S-H, Wang C-B (2003) Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide. Catal Lett 88:169–174. doi: 10.1023/A:1024013822986 CrossRefGoogle Scholar
  33. 33.
    Liotta LF, Di Carlo G, Pantaleo G, Venezia AM, Deganello G (2006) Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4–CeO2 interaction and catalytic activity. Appl Catal B 66:217–227. doi: 10.1016/j.apcatb.2006.03.018 CrossRefGoogle Scholar
  34. 34.
    Tang C-W, Kuo M-C, Lin C-J, Wang C-B, Chien S-H (2008) Evaluation of carbon monoxide oxidation over CeO2/Co3O4 catalysts: effect of ceria loading. Catal Today 131:520–525. doi: 10.1016/j.cattod.2007.10.026 CrossRefGoogle Scholar
  35. 35.
    Konishcheva MV, Potemkin DI, Snytnikov PV et al (2015) Selective CO methanation in H2-rich stream over Ni-, Co- and Fe/CeO2: effect of metal and precursor nature. Int J Hydrog Energy 40:14058–14063. doi: 10.1016/j.ijhydene.2015.07.071 CrossRefGoogle Scholar
  36. 36.
    Wang H, Miller JT, Shakouri M et al (2013) XANES and EXAFS studies on metal nanoparticle growth and bimetallic interaction of Ni-based catalysts for CO2 reforming of CH4. Catal Today 207:3–12. doi: 10.1016/j.cattod.2012.09.015 CrossRefGoogle Scholar
  37. 37.
    Yan C-F, Chen H, Hu R-R et al (2014) Synthesis of mesoporous Co–Ce oxides catalysts by glycine-nitrate combustion approach for CO preferential oxidation reaction in excess H2. Int J Hydrog Energy 39:18695–18701. doi: 10.1016/j.ijhydene.2014.01.024 CrossRefGoogle Scholar
  38. 38.
    Reddy GK, Smirniotis PG (2015) High-temperature WGS reaction. In: Reddy GK, Smirniotis PG (eds) Water Gas Shift Reaction, vol 2. Elsevier, Amsterdam, pp 21–45CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Leonardo F. Peiretti
    • 1
  • Nuria Navascués
    • 2
  • Inés S. Tiscornia
    • 1
  • Eduardo E. Miró
    • 1
  1. 1.Instituto de Investigaciones en Catálisis y Petroquímica, INCAPE (FIQ, UNL-CONICET)Santa FeArgentina
  2. 2.Department of Chemical EngineeringNanoscience Institute of Aragon (INA)SaragossaSpain

Personalised recommendations