Journal of Materials Science

, Volume 51, Issue 7, pp 3454–3462 | Cite as

Ferroelectric phase changes and electrocaloric effects in Ba(Zr0.1Ti0.9)1−xSnxO3 ceramics solid solution

  • H. Kaddoussi
  • Y. Gagou
  • A. Lahmar
  • B. Allouche
  • J. L. Dellis
  • M. Courty
  • H. Khemakhem
  • M. El Marssi
Original Paper

Abstract

The effect of tin (Sn) incorporation in lead-free Ba(Zr0.1Ti0.9)O3 ceramics was investigated. Single phases with perovskite structure were identified using X-ray diffraction analysis. Dielectric permittivity and pyroelectric current measurements carried out versus temperature revealed ferroelectric-to-paraelectric structural phase transitions showing intermediate ferroelectric-to-ferroelectric sequence anomalies for low Sn-content compounds. Electrocaloric effects were highlighted by recording P–E hysteresis loops as function of temperature and the electrocaloric temperature change ∆T = 0.2 K was evaluated under 8.7 kV cm−1 applied electric field. Electrocaloric responsivity of 0.23 K mm kV−1 near Curie temperature remained almost constant until x = 0.075 before decreasing for compounds with x ≥ 0.1. Basing on pyroelectric measurement, we highlight the presence of one quadruple point in this system where the simultaneous presence of Zr and Sn in BaTiO3 matrix seems to stabilize ferroelectric and electrocaloric behaviors instead of Sn element alone.

References

  1. 1.
    Tuttle BA, Payne DA (1981) The effects of microstructure on the electrocaloric properties of Pb(Zr, Sn, Ti)O3 ceramics. Ferroelectrics 37:603–606. doi:10.1080/00150198108223496 CrossRefGoogle Scholar
  2. 2.
    Mischenko AS (2006) Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science 311:1270–1271. doi:10.1126/science.1123811 CrossRefGoogle Scholar
  3. 3.
    Rožič B, Lu SG, Kutnjak Z et al (2011) Electrocaloric effect in the relaxor ferroelectric terpolymer P(VDF-TrFE-CFE). Ferroelectrics 422:81–85. doi:10.1080/00150193.2011.594743 CrossRefGoogle Scholar
  4. 4.
    Alpay SP, Mantese J, Trolier-McKinstry S et al (2014) Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull 39:1099–1111. doi:10.1557/mrs.2014.256 CrossRefGoogle Scholar
  5. 5.
    Tishin AM (2003) The magnetocaloric effect and its applications. Institute of Physics Pub, BristolCrossRefGoogle Scholar
  6. 6.
    Lu S-G, Zhang Q (2009) Electrocaloric materials for solid-state refrigeration. Adv Mater 21:1983–1987. doi:10.1002/adma.200802902 CrossRefGoogle Scholar
  7. 7.
    Lu SG, Rožič B, Zhang QM et al (2010) Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect. Appl Phys Lett 97:162904. doi:10.1063/1.3501975 CrossRefGoogle Scholar
  8. 8.
    Bai Y, Zheng G-P, Ding K et al (2011) The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film. J Appl Phys 110:094103. doi:10.1063/1.3658251 CrossRefGoogle Scholar
  9. 9.
    Chukka R, Cheah JW, Chen Z et al (2011) Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries. Appl Phys Lett 98:242902. doi:10.1063/1.3595344 CrossRefGoogle Scholar
  10. 10.
    Correia TM, Kar-Narayan S, Young JS et al (2011) PST thin films for electrocaloric coolers. J Phys Appl Phys 44:165407. doi:10.1088/0022-3727/44/16/165407 CrossRefGoogle Scholar
  11. 11.
    Liu XQ, Chen TT, Fu MS et al (2014) Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: effects of domain sizes and phase constitution. Ceram Int 40:11269–11276. doi:10.1016/j.ceramint.2014.03.175 CrossRefGoogle Scholar
  12. 12.
    Bai Y, Han X, Qiao L (2013) Optimized electrocaloric refrigeration capacity in lead-free (1−x)BaZr0.2Ti0.8O3−xBa0.7Ca0.3TiO3 ceramics. Appl Phys Lett 102:252904. doi:10.1063/1.4810916 CrossRefGoogle Scholar
  13. 13.
    Luo Z, Zhang D, Liu Y et al (2014) Enhanced electrocaloric effect in lead-free BaTi1−xSnxO3 ceramics near room temperature. Appl Phys Lett 105:102904. doi:10.1063/1.4895615 CrossRefGoogle Scholar
  14. 14.
    Upadhyay SK, Reddy VR, Bag P et al (2014) Electro-caloric effect in lead-free Sn doped BaTiO3 ceramics at room temperature and low applied fields. Appl Phys Lett 105:112907. doi:10.1063/1.4896044 CrossRefGoogle Scholar
  15. 15.
    Asbani B, Dellis J-L, Gagou Y et al (2015) Electrocaloric effect in Ba0.2Ca0.8Ti0.95Ge0.05O3 determined by a new pyroelectric method. EPL. Europhys Lett 111:57008. doi:10.1209/0295-5075/111/57008 CrossRefGoogle Scholar
  16. 16.
    Kell RC, Hellicar NJ (1956) Structural transitions in barium titanate-zirconate transducer materials. Acta Acust United Acust 6:235–245Google Scholar
  17. 17.
    Farhi R, El Marssi M, Simon A, Ravez J (1999) A Raman and dielectric study of ferroelectric ceramics. Eur Phys J B 9:599–604. doi:10.1007/s100510050803 CrossRefGoogle Scholar
  18. 18.
    Lei C, Bokov AA, Ye Z-G (2007) Ferroelectric to relaxor crossover and dielectric phase diagram in the BaTiO3–BaSnO3 system. J Appl Phys 101:084105. doi:10.1063/1.2715522 CrossRefGoogle Scholar
  19. 19.
    Horchidan N, Ianculescu AC, Curecheriu LP et al (2011) Preparation and characterization of barium titanate stannate solid solutions. J Alloys Compd 509:4731–4737. doi:10.1016/j.jallcom.2011.01.123 CrossRefGoogle Scholar
  20. 20.
    Wei X, Yao X (2007) Preparation, structure and dielectric property of barium stannate titanate ceramics. Mater Sci Eng B 137:184–188. doi:10.1016/j.mseb.2006.11.012 CrossRefGoogle Scholar
  21. 21.
    Frontera C, Rodrίguez-Carvajal J (2003) Full Prof as a new tool for flipping ratio analysis. Phys B Condens Matter 335:219–222. doi:10.1016/S0921-4526(03)00241-2 CrossRefGoogle Scholar
  22. 22.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. doi:10.1107/S0567739476001551 CrossRefGoogle Scholar
  23. 23.
    Ehmke MC, Ehrlich SN, Blendell JE, Bowman KJ (2012) Phase coexistence and ferroelastic texture in high strain (1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 piezoceramics. J Appl Phys 111:124110. doi:10.1063/1.4730342 CrossRefGoogle Scholar
  24. 24.
    Kaddoussi H, Gagou Y, Lahmar A et al (2015) Room temperature electro-caloric effect in lead-free Ba(Zr0.1Ti0.9)1−xSnxO3 (x = 0, x = 0.075) ceramics. Solid State Commun 201:64–67. doi:10.1016/j.ssc.2014.10.003 CrossRefGoogle Scholar
  25. 25.
    Lines ME, Glass AM (2001) Principles and applications of ferroelectrics and related materials. Clarendon Press, Oxford University Press, OxfordCrossRefGoogle Scholar
  26. 26.
    Ciomaga CE, Calderone R (2006) Relaxor properties of Ba(Zr, Ti)O3 ceramics. J Optoelectron Adv Mater 8:944–948Google Scholar
  27. 27.
    Deluca M, Vasilescu CA, Ianculescu AC et al (2012) Investigation of the composition-dependent properties of BaTi1−xZrxO3 ceramics prepared by the modified Pechini method. J Eur Ceram Soc 32:3551–3566. doi:10.1016/j.jeurceramsoc.2012.05.007 CrossRefGoogle Scholar
  28. 28.
    Kaddoussi H, Lahmar A, Gagou Y et al (2015) Electro-caloric effect in lead-free ferroelectric Ba1−xCax(Zr0.1Ti0.9)0.925 Sn0.075O3 ceramics. Ceram Int 41:15103–15110. doi:10.1016/j.ceramint.2015.08.080 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratoire des Matériaux Ferroélectriques (LMF), LR- Physique-Mathématiques et Applications, Faculté des Sciences de Sfax (FSS)Université de SfaxSfaxTunisia
  2. 2.Laboratoire de Physique de la Matière Condensée (LPMC)Université de Picardie Jules VerneAmiens Cedex 1France
  3. 3.Laboratoire de Reactivité et Chimie des Solides (L.R.C.S), UMR CNRS 7314Université de Picardie Jules VerneAmiens CedexFrance

Personalised recommendations