Advertisement

Journal of Materials Science

, Volume 51, Issue 5, pp 2687–2704 | Cite as

Hot tearing characteristics of Mg–2Ca–xZn alloys

  • Jiangfeng SongEmail author
  • Zhi Wang
  • Yuanding Huang
  • Amirthalingam Srinivasan
  • Felix Beckmann
  • Karl Ulrich Kainer
  • Norbert Hort
Original Paper

Abstract

Influence of Zn content (0, 0.5, 1.5, 4 and 6 wt%) on the hot tearing characteristics of Mg–2 wt% Ca alloy was investigated. The constrained rod casting (CRC) apparatus equipped with a load cell and data acquisition system was used. The initiation of hot tearing was monitored during solidification. The effect of mould temperatures (250 and 450 °C) on the hot tearing was also investigated. The formed tears were evaluated using X-ray tomography and the tear volumes were measured. Results show that hot tearing susceptibility (HTS) of Mg–2Ca–xZn (x = 0, 0.5, 1.5, 4 and 6 wt%) alloys increases with increase in Zn content up to 1.5 wt%, then decreases with further increase in the Zn content to 6 wt%. Higher initial mould temperature (450 °C) improves the hot tearing resistance. The observations on the microstructures and the fracture surfaces suggest that the hot tear initiated at the grain boundaries and propagated along them through the thin liquid film rupture and liquid metal embrittlement of solid bridges. Tear healing by low melting point eutectic liquid is also observed in some of the alloys.

Keywords

Mould Temperature Freezing Range Eutectic Liquid Liquid Metal Embrittlement Solid Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Mrs. Petra Fischer, Mr. Guenter Meister, Mr. Gert Wiese for their technical supports. Financial support from China Scholarship Council for this work is greatly appreciated.

References

  1. 1.
    D’Elia F, Ravindran C, Sediako D (2015) Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy. Mater Sci Eng A 624:169–180CrossRefGoogle Scholar
  2. 2.
    Easton MA, Gibson MA, Zhu SM, Abbott TB (2014) An a priori hot-tearing indicator applied to die-cast magnesium-rare earth alloys. Metall Mater Trans A 45:3586–3595CrossRefGoogle Scholar
  3. 3.
    Cao G, Zhang C, Cao H, Chang YA, Kou S (2010) Hot-tearing susceptibility of ternary mg-al-sr alloy castings. Metall Mater Trans A 41:706–716CrossRefGoogle Scholar
  4. 4.
    Eskin DG, Suyitno Katgerman L (2004) Mechanical properties in the semi-solid state and hot tearing of aluminium alloys. Prog Mater Sci 49:629–711CrossRefGoogle Scholar
  5. 5.
    Sweet L, Easton MA, Taylor JA et al (2013) Hot tear susceptibility of Al-Mg-Si-Fe alloys with varying iron contents. Metall Mater Trans A 44:5396–5407CrossRefGoogle Scholar
  6. 6.
    Cao G, Kou S (2006) Hot cracking of binary Mg–Al alloy castings. Mater Sci Eng A 417:230–238CrossRefGoogle Scholar
  7. 7.
    Zhen Z, Hort N, Huang YD, Petri N, Utke O, Kainer KU (2009) Quantitative determination on hot tearing in Mg-Al binary alloys. Mater Sci Forum 618–619:533–540CrossRefGoogle Scholar
  8. 8.
    Zhou L, Huang YD, Mao PL, Kainer KU, Liu Z, Hort N (2011) Influence of composition on hot tearing in binary Mg–Zn alloys. Int J Cast Met Res 24:170–176CrossRefGoogle Scholar
  9. 9.
    Wang Z, Huang YD, Srinivasan A, Liu Z, Beckmann F, Kainer KU, Hort N (2013) Hot tearing susceptibility of binary Mg–Y alloy castings. Mater Design 47:90–100CrossRefGoogle Scholar
  10. 10.
    Srinivasan A, Wang Z, Huang Y, Beckmann F, Kainer K, Hort N (2013) Hot tearing characteristics of binary Mg-Gd alloy castings. Metall Mater Trans A 44:2285–2298CrossRefGoogle Scholar
  11. 11.
    Gunde P, Schiffl A, Uggowitzer PJ (2010) Influence of yttrium additions on the hot tearing susceptibility of magnesium–zinc alloys. Mater Sci Eng A 527:7074–7079CrossRefGoogle Scholar
  12. 12.
    Wang Z, Song J, Huang YD, Srinivasan A, Liu Z, Kainer K, Hort N (2015) An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions. Metall Mater Trans A 46:2108–2118CrossRefGoogle Scholar
  13. 13.
    Cao G, Kou S (2006) Hot tearing of ternary Mg-Al-Ca alloy castings. Metall Mater Trans A 37:3647–3663CrossRefGoogle Scholar
  14. 14.
    Cao G, Haygood I, Kou S (2010) Onset of hot tearing in ternary Mg-Al-Sr alloy castings. Metall Mater Trans A 41:2139–2150CrossRefGoogle Scholar
  15. 15.
    Zhou L, Huang YD, Mao PL, Kainer KU, Liu Z, Hort N (2011) Investigations on hot tearing of Mg-Zn-(Al) alloys. In: Sillekens WH, Agnew SR, Neelameggham NR, Mathaudhu SN (eds) Magnesium technology. Wiley, Hoboken, pp 125–130Google Scholar
  16. 16.
    Wang Y, Wang Q, Wu G, Zhu Y, Ding W (2002) Hot-tearing susceptibility of Mg–9Al–xZn alloy. Mater Lett 57:929–934CrossRefGoogle Scholar
  17. 17.
    Bakhsheshi-Rad HR, Idris MH, Abdul-Kadir MR (2013) Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg–Ca–Zn alloy. Surf Coat Tech 222:79–89CrossRefGoogle Scholar
  18. 18.
    Zhang B, Hou Y, Wang X, Wang Y, Geng L (2011) Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. Mater Sci Eng C 31:1667–1673CrossRefGoogle Scholar
  19. 19.
    Zhang B, Wang Y, Geng L (2011) Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. In: Pignatello R (ed) Biomaterials—physics and chemistry. InTech, Rijeka, pp 183–204Google Scholar
  20. 20.
    Gao X, Zhu SM, Muddle BC, Nie JF (2005) Precipitation-hardened Mg–Ca–Zn alloys with superior creep resistance. Scripta Mater 53:1321–1326CrossRefGoogle Scholar
  21. 21.
    Tong LB, Zheng MY, Hu XS, Wu K, Xu SW, Kamado S, Kojima Y (2010) Influence of ECAP routes on microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater Sci Eng A 527:4250–4256CrossRefGoogle Scholar
  22. 22.
    Somekawa H, Mukai T (2007) High strength and fracture toughness balance on the extruded Mg–Ca–Zn alloy. Mater Sci Eng A 459:366–370CrossRefGoogle Scholar
  23. 23.
    Levi G, Avraham S, Zilberov A, Bamberger M (2006) Solidification, solution treatment and age hardening of a Mg–1.6 wt% Ca–3.2 wt% Zn alloy. Acta Mater 54:523–530CrossRefGoogle Scholar
  24. 24.
    Nie JF, Muddle BC (1997) Precipitation hardening of Mg-Ca(-Zn) alloys. Scripta Mater 37:1475–1481CrossRefGoogle Scholar
  25. 25.
    Tong LB, Zheng MY, Xu SW et al (2011) Effect of Mn addition on microstructure, texture and mechanical properties of Mg–Zn–Ca alloy. Mater Sci Eng A 528:3741–3747CrossRefGoogle Scholar
  26. 26.
    Gao JH, Guan SK, Ren ZW, Sun YF, Zhu SJ, Wang B (2011) Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid. Mater Lett 65:691–693CrossRefGoogle Scholar
  27. 27.
    Song J, Wang Z, Huang YD, Srinivasan A, Beckmann F, Kainer KU, Hort N (2015) Hot tearing susceptibility of Mg-Ca binary alloys. Metall Mater Trans A 46:6003–6012CrossRefGoogle Scholar
  28. 28.
    Powell BR, Luo AA, Tiwari BL, Rezhets V (2002) The die castability of calcium-containing magnesium alloys: thin-wall computer case, Magnesium Technology 2002. TMS, Warrendale, pp 123–129Google Scholar
  29. 29.
    Song J, Wang Z, Huang YD, Srinivasan A, Beckmann F, Kainer KU, Hort N (2015) Effect of Zn addition on hot tearing behaviour of Mg–0.5Ca–xZn alloys. Mater Design 87:157–170CrossRefGoogle Scholar
  30. 30.
    Zhen Z, Hort N, Utke O, Huang YD, Petri N, Kainer KU (2009) Investigations on hot tearing of Mg-Al binary alloys by using a new quantitative method. In: Nyberg EA, Agnew SR, Neelameggham NR, Pekguleryuz MO (eds) Magnesium technology. Wiley, Hoboken, pp 105–110Google Scholar
  31. 31.
    D’Elia F, Ravindran C, Sediako D, Kainer KU, Hort N (2014) Hot tearing mechanisms of B206 aluminum–copper alloy. Mater Design 64:44–55CrossRefGoogle Scholar
  32. 32.
    Eskin DG, Katgerman L (2007) A quest for a new hot tearing criterion. Metall Mater Trans A 38:1511–1519CrossRefGoogle Scholar
  33. 33.
    Clyne TW, Davies GJ (1979) Comparison between experimental data and theoretical predictions relating to dependence of solidification cracking on composition. Solidification and casting of metals. Metals Society, London, pp 275–278Google Scholar
  34. 34.
    Wang Z, Huang Y, Srinivasan A, Liu Z, Beckmann F, Kainer K, Hort N (2014) Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. J Mater Sci 49:353–362. doi: 10.1007/s10853-013-7712-z CrossRefGoogle Scholar
  35. 35.
    Eskin DG, Suyitno Mooney JF, Katgerman L (2004) Contraction of aluminum alloys during and after solidification. Metall Mater Trans A 35:1325–1335CrossRefGoogle Scholar
  36. 36.
    Suyitno Eskin DG, Savran VI, Katgerman L (2004) Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metall Mater Trans A 35:3551–3561CrossRefGoogle Scholar
  37. 37.
    Eskin DG, Savran VI, Katgerman L (2005) Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy. Metall Matrt Trans A 36:1965–1976CrossRefGoogle Scholar
  38. 38.
    Suyitno Eskin DG, Katgerman L (2006) Structure observations related to hot tearing of Al-Cu billets produced by direct-chill casting. Mater Sci Eng A 420:1–7CrossRefGoogle Scholar
  39. 39.
    Huang YD, Wang Z, Srinivasan A, Kainer KU, Hort N (2012) Metallurgical characterization of hot tearing curves recorded during solidification of magnesium alloys. Acta Phys Pol A 122:497–500Google Scholar
  40. 40.
    Huang H, Fu P, Wang Y, Peng L, Jiang H (2014) Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg–3Nd–0.2Zn–Zr Mg alloys. Trans Nonferr Met Soc 24:922–929CrossRefGoogle Scholar
  41. 41.
    Pellini WS (1952) Strain theory of hot tearing. Foundry 80:125–199Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jiangfeng Song
    • 1
    Email author
  • Zhi Wang
    • 2
  • Yuanding Huang
    • 1
  • Amirthalingam Srinivasan
    • 3
  • Felix Beckmann
    • 1
  • Karl Ulrich Kainer
    • 1
  • Norbert Hort
    • 1
  1. 1.Institute of Materials ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.School of Materials Science and EngineeringShenyang University of TechnologyShenyangChina
  3. 3.CSIR-National Institute for Interdisciplinary Science and Technology (NIIST)TrivandrumIndia

Personalised recommendations