Advertisement

Journal of Materials Science

, Volume 51, Issue 5, pp 2243–2258 | Cite as

Review on slip transmission criteria in experiments and crystal plasticity models

  • E. Bayerschen
  • A. T. McBride
  • B. D. Reddy
  • T. Böhlke
Review

Abstract

A comprehensive overview is given of the literature on slip transmission criteria for grain boundaries in metals, with a focus on slip system and grain boundary orientation. Much of this extensive literature has been informed by experimental investigations. The use of geometric criteria in continuum crystal plasticity models is discussed. The theoretical framework of Gurtin (J Mech Phys Solids 56:640–662, 2008) is reviewed for the single slip case. This highlights the connections to slip transmission criteria from the literature that are not discussed in the work itself. Different geometric criteria are compared for the single slip case with regard to their prediction of slip transmission. Perspectives on additional criteria, investigated in experiments and used in computational simulations, are given.

Keywords

Slip System Slip Plane Critical Angle Resolve Shear Stress Slip Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the following support: T. Böhlke and E. Bayerschen: German Research Foundation (DFG) under Grant BO1466/5-1, part of the DFG Research Group 1650 “Dislocation based Plasticity,” and Karlsruhe House of Young Scientists (KHYS) for funding a stay of the first author of this work at CERECAM, UCT. B.D. Reddy and A.T. McBride: National Research Foundation of South Africa (SA) through the SA Research Chair in Computational Mechanics. The support by E. Ramani in preparing the plots in “Comparison of geometric criteria for the single slip case” is acknowledged.

Compliance with ethical standards

Conflicts of interest

The authors confirm that no conflicts of interest arise with regard to the research leading to this paper, nor with publication of this work.

References

  1. 1.
    Hirth JP (1972) The influence of grain boundaries on mechanical properties. Metall Trans 3(12):3047–3067CrossRefGoogle Scholar
  2. 2.
    Shen Z, Wagoner R, Clark W (1988) Dislocation and grain boundary interactions in metals. Acta Metall 36(12):3231–3242CrossRefGoogle Scholar
  3. 3.
    Davis K, Teghtsoonian E, Lu A (1966) Slip band continuity across grain boundaries in aluminum. Acta Metall 14(12):1677–1684CrossRefGoogle Scholar
  4. 4.
    Lim L, Raj R (1985) Interaction between lattice and grain boundary dislocations and their role in mechanical properties of interfaces. Le J Phys Colloq 46(C4):C4–581Google Scholar
  5. 5.
    Shen Z, Wagoner R, Clark W (1986) Dislocation pile-up and grain boundary interactions in 304 stainless steel. Scr Metall 20(6):921–926CrossRefGoogle Scholar
  6. 6.
    Murr L (1981) Strain-induced dislocation emission from grain boundaries in stainless steel. Mater Sci Eng 51(1):71–79CrossRefGoogle Scholar
  7. 7.
    Lim L (1984) Slip-twin interactions in nickel at 573 K at large strains. Scr Metall 18(10):1139–1142CrossRefGoogle Scholar
  8. 8.
    Lee T, Robertson I, Birnbaum H (1989) Anomalous slip in an FCC system. Ultramicroscopy 29(1):212–216CrossRefGoogle Scholar
  9. 9.
    Medlin D, Carter C, Angelo J, Mills M (1997) Climb and glide of a/3〈111〉 dislocations in an aluminium Σ = 3 boundary. Philos Mag A 75(3):733–747Google Scholar
  10. 10.
    Zghal S, Coujou A, Couret A (2001) Transmission of the deformation through \(\gamma -\gamma \) interfaces in a polysynthetically twinned TiAl alloy I. Ordered domain interfaces (120\(^\circ \) rotational). Philos Mag A 81(2):345–364CrossRefGoogle Scholar
  11. 11.
    Zghal S, Couret A (2001) Transmission of the deformation through \(\gamma -\gamma \) interfaces in a polysynthetically twinned TiAl alloy II. Twin interfaces (180\(^\circ \) rotational). Philos Mag A 81(2):365–382CrossRefGoogle Scholar
  12. 12.
    Lim L, Raj R (1985) Continuity of slip screw and mixed crystal dislocations across bicrystals of nickel at 573 K. Acta Metall 33(8):1577–1583CrossRefGoogle Scholar
  13. 13.
    Gemperlova J, Polcarova M, Gemperle A, Zarubova N (2004) Slip transfer across grain boundaries in fe-si bicrystals. J Alloys Compd 378(1):97–101CrossRefGoogle Scholar
  14. 14.
    Gemperle A, Zarubova N, Gemperlova J (2005) Reactions of slip dislocations with twin boundary in Fe-Si bicrystals. J Mater Sci 40(12):3247–3254. doi: 10.1007/s10853-005-2693-1 CrossRefGoogle Scholar
  15. 15.
    Pond RC, Medlin DL, Serra A (2006) A study of the accommodation of coherency strain by interfacial defects at a grain boundary in gold. Philos Mag 86(29–31):4667–4684CrossRefGoogle Scholar
  16. 16.
    Takasugi T, Izumi O, Fat-Halla N (1978) Activated slip systems during yielding of \(\alpha \)-\(\beta \) brass two-phase bicrystals. J Mater Sci 13(9):2013–2021. doi: 10.1007/BF00552909 CrossRefGoogle Scholar
  17. 17.
    Forwood C, Clarebrough L (1981) Prismatic glide and slip transfer across a high-angle grain boundary. Philos Mag A 44(1):31–41CrossRefGoogle Scholar
  18. 18.
    De Hosson JT, Soer WA, Minor AM, Shan Z, Stach EA, Asif SS, Warren OL (2006) In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon. J Mater Sci 41(23):7704–7719. doi: 10.1007/s10853-006-0472-2 CrossRefGoogle Scholar
  19. 19.
    Lim L, Raj R (1985) The role of residual dislocation arrays in slip induced cavitation, migration and dynamic recrystallization at grain boundaries. Acta Metall 33(12):2205–2214CrossRefGoogle Scholar
  20. 20.
    Pond R, Smith D (1977) On the absorption of dislocations by grain boundaries. Philos Mag 36(2):353–366CrossRefGoogle Scholar
  21. 21.
    Clark W, Smith D (1979) Interaction of lattice dislocations with periodic grain boundary structures. J Mater Sci 14(4):776–788. doi: 10.1007/BF00550708 Google Scholar
  22. 22.
    Malis T, Tangri K (1979) Grain boundaries as dislocation sources in the premacroyield strain region. Acta Metall 27(1):25–32CrossRefGoogle Scholar
  23. 23.
    Brentnall W, Rostoker W (1965) Some observations on microyielding. Acta Metall 13(3):187–198CrossRefGoogle Scholar
  24. 24.
    Lall C, Chin S, Pope D (1979) The orientation and temperature dependence of the yield stress of Ni3 (Al, Nb) single crystals. Metall Trans A 10(9):1323–1332CrossRefGoogle Scholar
  25. 25.
    Seal JR, Crimp MA, Bieler TR, Boehlert CJ (2012) Analysis of slip transfer and deformation behavior across the \(\alpha \)/\(\beta \) interface in Ti-5Al-2.5 Sn (wt.%) with an equiaxed microstructure. Mater Sci Eng A 552:61–68CrossRefGoogle Scholar
  26. 26.
    West E, Was G (2013) Strain incompatibilities and their role in intergranular cracking of irradiated 316L stainless steel. J Nucl Mater 441(1):623–632CrossRefGoogle Scholar
  27. 27.
    Bridier F, Villechaise P, Mendez J (2005) Analysis of the different slip systems activated by tension in a \(\alpha \)/\(\beta \) titanium alloy in relation with local crystallographic orientation. Acta Mater 53(3):555–567CrossRefGoogle Scholar
  28. 28.
    Abuzaid WZ, Sangid MD, Carroll JD, Sehitoglu H, Lambros J (2012) Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J Mech Phys Solids 60(6):1201–1220CrossRefGoogle Scholar
  29. 29.
    Miura S, Saeki Y (1978) Plastic deformation of aluminum bicrystals 〈100〉 oriented. Acta Metall 26(1):93–101CrossRefGoogle Scholar
  30. 30.
    Clark W, Wagoner R, Shen Z, Lee T, Robertson I, Birnbaum H (1992) On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater 26(2):203–206CrossRefGoogle Scholar
  31. 31.
    Guo Y, Britton T, Wilkinson A (2014) Slip band-grain boundary interactions in commercial-purity titanium. Acta Mater 76:1–12CrossRefGoogle Scholar
  32. 32.
    Lee T, Robertson I, Birnbaum H (1989) Prediction of slip transfer mechanisms across grain boundaries. Scr Metall 23(5):799–803CrossRefGoogle Scholar
  33. 33.
    Kacher J, Robertson I (2012) Quasi-four-dimensional analysis of dislocation interactions with grain boundaries in 304 stainless steel. Acta Mater 60(19):6657–6672CrossRefGoogle Scholar
  34. 34.
    Zhou C, LeSar R (2012) Dislocation dynamics simulations of plasticity in polycrystalline thin films. Int J Plast 30:185–201CrossRefGoogle Scholar
  35. 35.
    Bachurin D, Weygand D, Gumbsch P (2010) Dislocation–grain boundary interaction in 〈111〉 textured thin metal films. Acta Mater 58(16):5232–5241CrossRefGoogle Scholar
  36. 36.
    Sangid MD, Ezaz T, Sehitoglu H, Robertson IM (2011) Energy of slip transmission and nucleation at grain boundaries. Acta Mater 59(1):283–296CrossRefGoogle Scholar
  37. 37.
    Koning MD, Miller R, Bulatov V, Abraham FF (2002) Modelling grain-boundary resistance in intergranular dislocation slip transmission. Philos Mag A 82(13):2511–2527CrossRefGoogle Scholar
  38. 38.
    Brandl C, Bitzek E, Derlet P, Van Swygenhoven H (2007) Slip transfer through a general high angle grain boundary in nanocrystalline aluminum. Appl Phys Lett 91(11):111914CrossRefGoogle Scholar
  39. 39.
    Zhu T, Gao H (2012) Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling. Scr Mater 66(11):843–848CrossRefGoogle Scholar
  40. 40.
    Baillin X, Pelissier J, Bacmann J, Jacques A, George A (1987) Dislocation transmission through \(\Sigma \)= 9 symmetrical tilt boundaries in silicon and germanium: I. In situ observations by synchrotron X-ray topography and high-voltage electron microscopy. Philos Mag A 55(2):143–164CrossRefGoogle Scholar
  41. 41.
    Couzinie J, Decamps B, Priester L (2005) Interaction of dissociated lattice dislocations with a \(\Sigma \)= 3 grain boundary in copper. Int J Plast 21(4):759–775CrossRefGoogle Scholar
  42. 42.
    Jin Z-H, Gumbsch P, Ma E, Albe K, Lu K, Hahn H, Gleiter H (2006) The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. Scr Mater 54(6):1163–1168CrossRefGoogle Scholar
  43. 43.
    Dewald M, Curtin W (2007) Multiscale modelling of dislocation/grain-boundary interactions: I. edge dislocations impinging on \(\Sigma \)11 (1 1 3) tilt boundary in Al. Model Simul MaterSci Eng 15(1):S193CrossRefGoogle Scholar
  44. 44.
    Dewald M, Curtin W (2007) Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al. Philos Mag 87(30):4615–4641CrossRefGoogle Scholar
  45. 45.
    Liu B, Eisenlohr P, Roters F, Raabe D (2012) Simulation of dislocation penetration through a general low-angle grain boundary. Acta Mater 60(13):5380–5390CrossRefGoogle Scholar
  46. 46.
    Kacher J, Robertson IM (2014) In situ and tomographic analysis of dislocation/grain boundary interactions in \(\alpha \)-titanium. Philos Mag 94(8):814–829CrossRefGoogle Scholar
  47. 47.
    Soer W, De Hosson JTM (2005) Detection of grain-boundary resistance to slip transfer using nanoindentation. Mater Lett 59(24):3192–3195CrossRefGoogle Scholar
  48. 48.
    Britton T, Randman D, Wilkinson A (2009) Nanoindentation study of slip transfer phenomenon at grain boundaries. J Mater Res 24(03):607–615CrossRefGoogle Scholar
  49. 49.
    Kacher J, Eftink B, Cui B, Robertson I (2014) Dislocation interactions with grain boundaries. Curr Opin Solid State Mater Sci 18(4):227–243CrossRefGoogle Scholar
  50. 50.
    Misra A, Gibala R (1999) Slip transfer and dislocation nucleation processes in multiphase ordered Ni-Fe-Al alloys. Metall Mater Trans A 30(4):991–1001CrossRefGoogle Scholar
  51. 51.
    Beyerlein IJ, Wang J, Zhang R (2013) Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater 61(19):7488–7499CrossRefGoogle Scholar
  52. 52.
    Beyerlein I, Mayeur J, McCabe R, Zheng S, Carpenter J, Mara N (2014) Influence of slip and twinning on the crystallographic stability of bimetal interfaces in nanocomposites under deformation. Acta Mater 72:137–147CrossRefGoogle Scholar
  53. 53.
    Beyerlein I, Mara N, Wang J, Carpenter J, Zheng S, Han W, Zhang R, Kang K, Nizolek T, Pollock T (2012) Structure-property-functionality of bimetal interfaces. JOM 64(10):1192–1207CrossRefGoogle Scholar
  54. 54.
    Misra A, Hirth J, Hoagland R (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53(18):4817–4824CrossRefGoogle Scholar
  55. 55.
    Asaro RJ (1983) Crystal plasticity. J Appl Mech 50(4b):921–934CrossRefGoogle Scholar
  56. 56.
    Needleman A, Tvergaard V (1993) Comparison of crystal plasticity and isotropic hardening predictions for metal-matrix composites. J Appl Mech 60(1):70–76CrossRefGoogle Scholar
  57. 57.
    Yao W, Krill C III, Albinski B, Schneider H-C, You J (2014) Plastic material parameters and plastic anisotropy of tungsten single crystal: a spherical micro-indentation study. J Mater Sci 49(10):3705–3715. doi: 10.1007/s10853-014-8080-z CrossRefGoogle Scholar
  58. 58.
    Ziemann M, Chen Y, Kraft O, Bayerschen E, Wulfinghoff S, Kirchlechner C, Tamura N, Böhlke T, Walter M, Gruber P (2015) Deformation patterns in cross-sections of twisted bamboo-structured Au microwires. Acta Mater 97:216–222CrossRefGoogle Scholar
  59. 59.
    Beyerlein IJ, Alexander DJ, Tomé CN (2007) Plastic anisotropy in aluminum and copper pre-strained by equal channel angular extrusion. J Mater Sci 42(5):1733–1750. doi: 10.1007/s10853-006-0906-x CrossRefGoogle Scholar
  60. 60.
    Eyckens P, Mulder H, Gawad J, Vegter H, Roose D, van den Boogaard T, Van Bael A, Van Houtte P (2015) The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling. Int J PlastGoogle Scholar
  61. 61.
    Kalidindi SR (1998) Incorporation of deformation twinning in crystal plasticity models. J Mech Phys Solids 46(2):267–290CrossRefGoogle Scholar
  62. 62.
    Forest S (1998) Modeling slip, kink and shear banding in classical and generalized single crystal plasticity. Acta Mater 46(9):3265–3281CrossRefGoogle Scholar
  63. 63.
    Zaafarani N, Raabe D, Singh R, Roters F, Zaefferer S (2006) Three-dimensional investigation of the texture and microstructure below a nanoindent in a cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater 54(7):1863–1876CrossRefGoogle Scholar
  64. 64.
    Zhang K, Holmedal B, Hopperstad OS, Dumoulin S, Gawad J, Van Bael A, Van Houtte P (2015) Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification. Int J Plast 66:3–30CrossRefGoogle Scholar
  65. 65.
    Tian L, Russell A, Anderson I (2014) A dislocation-based, strain-gradient-plasticity strengthening model for deformation processed metal-metal composites. J Mater Sci 49(7):2787–2794. doi: 10.1007/s10853-013-7982-5 CrossRefGoogle Scholar
  66. 66.
    Mayeur J, Beyerlein I, Bronkhorst C, Mourad H (2015) Incorporating interface affected zones into crystal plasticity. Int J Plast 65:206–225CrossRefGoogle Scholar
  67. 67.
    Gurtin ME (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. J Mech Phys Solids 56(2):640–662CrossRefGoogle Scholar
  68. 68.
    Wulfinghoff S, Bayerschen E, Böhlke T (2013) A gradient plasticity grain boundary yield theory. Int J Plast 51:33–46CrossRefGoogle Scholar
  69. 69.
    Van Beers P, McShane G, Kouznetsova V, Geers M (2013) Grain boundary interface mechanics in strain gradient crystal plasticity. J Mech Phys Solids 61(12):2659–2679CrossRefGoogle Scholar
  70. 70.
    Wolf D (1990) Correlation between structure, energy, and ideal cleavage fracture for symmetrical grain boundaries in fcc metals. J Mater Res 5(08):1708–1730CrossRefGoogle Scholar
  71. 71.
    Fleck N, Muller G, Ashby M, Hutchinson J (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487CrossRefGoogle Scholar
  72. 72.
    Chen Y, Kraft O, Walter M (2015) Size effects in thin coarse-grained gold microwires under tensile and torsional loading. Acta Mater 87:78–85CrossRefGoogle Scholar
  73. 73.
    Gurtin ME (2000) On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J Mech Phys Solids 48(5):989–1036CrossRefGoogle Scholar
  74. 74.
    Gurtin ME (2002) A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50(1):5–32CrossRefGoogle Scholar
  75. 75.
    Rieger F, Böhlke T (2015) Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel. Arch Appl Mech. pp 1–20Google Scholar
  76. 76.
    Aifantis K, Soer W, De Hosson JTM, Willis J (2006) Interfaces within strain gradient plasticity: theory and experiments. Acta Mater 54(19):5077–5085CrossRefGoogle Scholar
  77. 77.
    Zhang X, Aifantis KE, Senger J, Weygand D, Zaiser M (2014) Internal length scale and grain boundary yield strength in gradient models of polycrystal plasticity: how do they relate to the dislocation microstructure? J Mater Res 29(18):2116–2128CrossRefGoogle Scholar
  78. 78.
    Geers M, Cottura M, Appolaire B, Busso EP, Forest S, Villani A (2014) Coupled glide-climb diffusion-enhanced crystal plasticity. J Mech Phys Solids 70:136–153CrossRefGoogle Scholar
  79. 79.
    van Beers P, Kouznetsova V, Geers M (2015) Defect redistribution within a continuum grain boundary plasticity model. J Mech Phys Solids 83:243–262CrossRefGoogle Scholar
  80. 80.
    Reuber C, Eisenlohr P, Roters F, Raabe D (2014) Dislocation density distribution around an indent in single-crystalline nickel: comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Mater 71:333–348CrossRefGoogle Scholar
  81. 81.
    Dogge M, Peerlings R, Geers M (2015) Interface modeling in continuum dislocation transport. Mech Mater 88:30–43CrossRefGoogle Scholar
  82. 82.
    Lucadamo G, Medlin D (2002) Dislocation emission at junctions between \(\Sigma \)= 3 grain boundaries in gold thin films. Acta Mater 50(11):3045–3055CrossRefGoogle Scholar
  83. 83.
    Wulfinghoff S, Böhlke T (2015) Gradient crystal plasticity including dislocation-based work-hardening and dislocation transport. Int J Plast 69:152–169CrossRefGoogle Scholar
  84. 84.
    Hochrainer T, Sandfeld S, Zaiser M, Gumbsch P (2014) Continuum dislocation dynamics: towards a physical theory of crystal plasticity. J Mech Phys Solids 63:167–178CrossRefGoogle Scholar
  85. 85.
    Evers L, Brekelmans W, Geers M (2004) Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids Struct 41(18):5209–5230CrossRefGoogle Scholar
  86. 86.
    Özdemir I, Yalçinkaya T (2014) Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework. Comput Mech 54(2):255–268CrossRefGoogle Scholar
  87. 87.
    Livingston J, Chalmers B (1957) Multiple slip in bicrystal deformation. Acta Metall 5(6):322–327CrossRefGoogle Scholar
  88. 88.
    Luster J, Morris M (1995) Compatibility of deformation in two-phase Ti-Al alloys: dependence on microstructure and orientation relationships. Metall Mater Trans A 26(7):1745–1756CrossRefGoogle Scholar
  89. 89.
    Bieler T, Eisenlohr P, Zhang C, Phukan H, Crimp M (2014) Grain boundaries and interfaces in slip transfer. Curr Opin Solid State Mater Sci 18(4):212–226CrossRefGoogle Scholar
  90. 90.
    Gottschalk D, McBride A, Reddy B, Javili A, Wriggers P, Hirschberger C (2016) Computational and theoretical aspects of a grain-boundary model that accounts for grain misorientation and grain-boundary orientation. Comput Mater Sci 111:443–459CrossRefGoogle Scholar
  91. 91.
    Schmid E, Boas W (1935) Kristallplastizität: Mit besonderer Berücksichtigung der Metalle. Springer, BerlinCrossRefGoogle Scholar
  92. 92.
    Eshelby J, Frank F, Nabarro F (1951) The equilibrium of linear arrays of dislocations. Lond Edinb Dublin Philos Mag J Sci 42(327):351–364CrossRefGoogle Scholar
  93. 93.
    Wo P, Ngan A (2004) Investigation of slip transmission behavior across grain boundaries in polycrystalline Ni3Al using nanoindentation. J Mater Res 19(01):189–201CrossRefGoogle Scholar
  94. 94.
    Lee T, Robertson I, Birnbaum H (1990) TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62(1):131–153CrossRefGoogle Scholar
  95. 95.
    Bamford T, Clark W, Wagoner R (1988) A thermodynamic model of slip propagation. Scr Metall 22(12):1911–1916CrossRefGoogle Scholar
  96. 96.
    Tiba I, Richeton T, Motz C, Vehoff H, Berbenni S (2015) Incompatibility stresses at grain boundaries in Ni bicrystalline micropillars analyzed by an anisotropic model and slip activity. Acta Mater 83:227–238CrossRefGoogle Scholar
  97. 97.
    Patriarca L, Abuzaid W, Sehitoglu H, Maier HJ (2013) Slip transmission in bcc FeCr polycrystal. Mater Sci Eng A 588:308–317CrossRefGoogle Scholar
  98. 98.
    Werner E, Prantl W (1990) Slip transfer across grain and phase boundaries. Acta Metall Mater 38(3):533–537CrossRefGoogle Scholar
  99. 99.
    Kumar BR (2010) Influence of crystallographic textures on tensile properties of 316L austenitic stainless steel. J Mater Sci 45(10):2598–2605. doi: 10.1007/s10853-010-4233-x CrossRefGoogle Scholar
  100. 100.
    Demkowicz M, Thilly L (2011) Structure, shear resistance and interaction with point defects of interfaces in Cu-Nb nanocomposites synthesized by severe plastic deformation. Acta Mater 59(20):7744–7756CrossRefGoogle Scholar
  101. 101.
    Wang J, Hoagland R, Liu X, Misra A (2011) The influence of interface shear strength on the glide dislocation-interface interactions. Acta Mater 59(8):3164–3173CrossRefGoogle Scholar
  102. 102.
    Wang J, Kang K, Zhang R, Zheng S, Beyerlein I, Mara N (2012) Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM 64(10):1208–1217CrossRefGoogle Scholar
  103. 103.
    Spearot DE, Sangid MD (2014) Insights on slip transmission at grain boundaries from atomistic simulations. Curr Opin Solid State Mater Sci 18(4):188–195CrossRefGoogle Scholar
  104. 104.
    Bieler T, Eisenlohr P, Roters F, Kumar D, Mason D, Crimp M, Raabe D (2009) The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int J Plast 25(9):1655–1683CrossRefGoogle Scholar
  105. 105.
    Sangid MD, Ezaz T, Sehitoglu H (2012) Energetics of residual dislocations associated with slip-twin and slip-GBs interactions. Mater Sci Eng A 542:21–30CrossRefGoogle Scholar
  106. 106.
    Dewald M, Curtin W (2011) Multiscale modeling of dislocation/grain-boundary interactions: III. 60\(^\circ \) dislocations impinging on \(\Sigma \)3, \(\Sigma \)9 and \(\Sigma \)11 tilt boundaries in Al. Model Simul Mater Sci Eng 19(5):055002CrossRefGoogle Scholar
  107. 107.
    Ezaz T, Sangid MD, Sehitoglu H (2011) Energy barriers associated with slip-twin interactions. Philos Mag 91(10):1464–1488CrossRefGoogle Scholar
  108. 108.
    Zikry M, Kao M (1996) Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J Mech Phys Solids 44(11):1765–1798CrossRefGoogle Scholar
  109. 109.
    Ekh M, Bargmann S, Grymer M (2011) Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech 218(1–2):103–113CrossRefGoogle Scholar
  110. 110.
    Shi J, Zikry M (2009) Grain-boundary interactions and orientation effects on crack behavior in polycrystalline aggregates. Int J Solids Struct 46(21):3914–3925CrossRefGoogle Scholar
  111. 111.
    Shi J, Zikry MA (2011) Modeling of grain boundary transmission, emission, absorption and overall crystalline behavior in \(\Sigma \)1, \(\Sigma \)3, and \(\Sigma \)17b bicrystals. J Mater Res 26(14):1676–1687CrossRefGoogle Scholar
  112. 112.
    Ma A, Roters F, Raabe D (2006) On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling-theory, experiments, and simulations. Acta Mater 54(8):2181–2194CrossRefGoogle Scholar
  113. 113.
    Ashmawi W, Zikry M (2002) Prediction of grain-boundary interfacial mechanisms in polycrystalline materials. J Eng Mater Technol 124(1):88–96CrossRefGoogle Scholar
  114. 114.
    Mesarovic SD (2010) Plasticity of crystals and interfaces: from discrete dislocations to size-dependent continuum theory. Theor Appl Mech 37(4):289–332CrossRefGoogle Scholar
  115. 115.
    Gurtin ME, Needleman A (2005) Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector. J Mech Phys Solids 53(1):1–31CrossRefGoogle Scholar
  116. 116.
    Jin Z-H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H (2008) Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater 56(5):1126–1135CrossRefGoogle Scholar
  117. 117.
    Cheng Y, Mrovec M, Gumbsch P (2008) Atomistic simulations of interactions between the 1/2〈111〉 edge dislocation and symmetric tilt grain boundaries in tungsten. Philos Mag 88(4):547–560CrossRefGoogle Scholar
  118. 118.
    Gibson M, Forwood C (2002) Slip transfer of deformation twins in duplex \(\gamma \)-based Ti-Al alloys: part III. Transfer across general large-angle \(\gamma \)-\(\gamma \) grain boundaries. Philos Mag A 82(7):1381–1404Google Scholar
  119. 119.
    Soer W, Aifantis K, De Hosson JTM (2005) Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater 53(17):4665–4676CrossRefGoogle Scholar
  120. 120.
    Liu F, Baker I, Dudley M (1995) Dislocation-grain boundary interactions in ice crystals. Philos Mag A 71(1):15–42CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. Bayerschen
    • 1
  • A. T. McBride
    • 2
  • B. D. Reddy
    • 2
  • T. Böhlke
    • 1
  1. 1.Chair for Continuum Mechanics, Institute of Engineering Mechanics (ITM)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Centre for Research in Computational and Applied Mechanics (CERECAM)University of Cape Town (UCT)RondeboschSouth Africa

Personalised recommendations