Journal of Materials Science

, Volume 51, Issue 5, pp 2394–2403 | Cite as

Novel low-cost hybrid composites from asphaltene/SBS tri-block copolymer with improved thermal and mechanical properties

  • Hongchao Wu
  • Vijay Kumar Thakur
  • Michael R. Kessler
Original Paper


A continuous demanding in raw chemicals cost reduction and processing simplification facilitates the exploration and development of new materials in current plastics industries. In this study, a novel carbonaceous filler material “asphaltene” extracted from inexpensive and abundant asphalt is blended into a thermoplastic elastomer poly(styrene–butadiene–styrene) copolymer (SBS) for the fabrication of hybrid composites at different loadings via melt-compounding. Due to its intrinsic molecular rigidness and desirable compatibility with SBS, the prepared asphaltene/SBS composites displays excellent thermo-mechanical properties by improving the storage modulus in the glassy region by 19 % and in the rubbery region by 305 %, as well as increasing the thermal stability by up to 20 °C. The overall mechanical properties are also enhanced substantially by incorporation of asphaltene into the SBS matrix according to the filler loading in SBS: the tensile strength increased by 2.2 MPa, the maximum elongation by 268 %, Young’s modulus by 214 %, and toughness by 100.4 %. Although the introduced asphaltene inevitably led to a gradual increment in the viscosity of polymer melts from the filler–filler and filler–polymer interactions, homogeneous dispersion of the reinforcing fillers at optimum loading (20–30 wt%) in SBS matrix is still sustained.


Asphalt Bitumen Hybrid Composite Filler Loading Glassy Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge funding for this project from Honeywell Federal Manufacturing & Technologies, LLC.


  1. 1.
    Scott DB, Waddon AJ, Lin YG, Karasz FE, Winter HH (1992) Shear-induced orientation transitions in triblock copolymer styrene-butadiene-styrene with cylindrical domain morphology. Macromolecules 25:4175. doi: 10.1021/ma00042a019 CrossRefGoogle Scholar
  2. 2.
    Wen G, Zhang Y, Zhang YX, Sun K, Fan YZ (2002) Rheological characterization of storage-stable SBS-modified asphalts. Polym Test 21:295. doi: 10.1016/s0142-9418(01)00086-1 CrossRefGoogle Scholar
  3. 3.
    Wu JH, Li CH, Wu YT, Leu MT, Tsai Y (2010) Thermal resistance and dynamic damping properties of poly (styrene-butadiene-styrene)/thermoplastic polyurethane composites elastomer material. Compos Sci Technol 70:1258. doi: 10.1016/j.compscitech.2010.03.014 CrossRefGoogle Scholar
  4. 4.
    Kricheldorf HR, Holden G, Quirk RP (2004) Thermoplastic elastomers. Hanser Publishers, MunichGoogle Scholar
  5. 5.
    Leyva ME, Barra GMO, Moreira ACF, Soares BG, Khastgir D (2003) Electric, dielectric, and dynamic mechanical behavior of carbon black/styrene-butadiene-styrene composites. J Polym Sci Part B 41:2983. doi: 10.1002/polb.10627 CrossRefGoogle Scholar
  6. 6.
    Lu L, Zhou Z, Zhang Y, Wang SF, Zhang YX (2007) Reinforcement of styrene-butadiene-styrene tri-block copolymer by multi-walled carbon nanotubes via melt mixing. Carbon 45:2621. doi: 10.1016/j.carbon.2007.08.025 CrossRefGoogle Scholar
  7. 7.
    Pedroni LG, Soto-Oviedo MA, Rosolen JM, Felisberti MI, Nogueira AF (2009) Conductivity and mechanical properties of composites based on MWCNTs and styrene-butadiene-styrene block (TM) copolymers. J Appl Polym Sci 112:3241. doi: 10.1002/app.29897 CrossRefGoogle Scholar
  8. 8.
    Pedroni LG, Araujo JR, Felisberti MI, Nogueira AF (2012) Nanocomposites based on MWCNT and styrene-butadiene-styrene block copolymers: effect of the preparation method on dispersion and polymer-filler interactions. Compos Sci Technol 72:1487. doi: 10.1016/j.compscitech.2012.06.009 CrossRefGoogle Scholar
  9. 9.
    Costa P, Silva J, Sencadas V, Simoes R, Viana JC, Lanceros-Mendez S (2013) Mechanical, electrical and electro-mechanical properties of thermoplastic elastomer styrene-butadiene-styrene/multiwall carbon nanotubes composites. J Mater Sci 48:1172. doi: 10.1007/s10853-012-6855-7 CrossRefGoogle Scholar
  10. 10.
    Ibarra L, Panos D (1997) Mechanical properties of thermoplastic butadiene-styrene (SBS) and oxidized short carbon fibre composites. Polym Int 43:251CrossRefGoogle Scholar
  11. 11.
    Zhang W, Zeng J, Liu L, Fang Y (2004) A novel property of styrene-butadiene-styrene/clay nanocomposites: radiation resistance. J Mater Chem 14:209. doi: 10.1039/b307978c CrossRefGoogle Scholar
  12. 12.
    Zhang ZJ, Zhang LN, Li Y, Xu HD (2006) Styrene-butadiene-styrene/montmorillonite nanocomposites synthesized by anionic polymerization. J Appl Polym Sci 99:2273. doi: 10.1002/app.22768 CrossRefGoogle Scholar
  13. 13.
    Wang ZB, Wang X (2011) Preparation and mechanical properties of styrene-butadiene-styrene tri-block copolymer/partly exfoliated montmorillonite nanocomposites prepared by melt-compounding. J Thermoplast Compos Mater 24:83. doi: 10.1177/0892705710376471 CrossRefGoogle Scholar
  14. 14.
    Thakur VK, Grewell D, Thunga M, Kessler MR (2014) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953. doi: 10.1002/mame.201300368 CrossRefGoogle Scholar
  15. 15.
    Tucker PS, Barlow JW, Paul DR (1988) Thermal, mechanical, and morphological analyses of poly(2,6-dimethyl-1,4-phenylene oxide)/styrene-butadiene-styrene copolymer blends. Macromolecules 21:1678. doi: 10.1021/ma00184a026 CrossRefGoogle Scholar
  16. 16.
    Leyva ME, Soares BG, Khastgir D (2002) Dynamic-mechanical and dielectric relaxations of SBS block copolymer: polyaniline blends prepared by mechanical mixing. Polymer 43:7505. doi: 10.1016/s0032-3861(02)00613-4 CrossRefGoogle Scholar
  17. 17.
    Leyva ME, Barra GMO, Gorelova MM, Soares BG, Sens M (2001) Conducting SBS block copolymer-polyaniline blends prepared by mechanical mixing. J Appl Polym Sci 80:626. doi: 10.1002/1097-4628(20010425)80:4<626:aid-app1138>;2-7 CrossRefGoogle Scholar
  18. 18.
    Soares BG, Leyva ME (2007) Effect of blend preparation on electrical, dielectric, and dynamical-mechanical properties of conducting polymer blend: SBS triblock copolymer/polyaniline. Macromol Mater Eng 292:354. doi: 10.1002/mame.200600405 CrossRefGoogle Scholar
  19. 19.
    Martinez-Estrada A, Chavez-Castellanos AE, Herrera-Alonso M, Herrera-Najera R (2010) Comparative study of the effect of sulfur on the morphology and rheological properties of SB- and SBS-modified asphalt. J Appl Polym Sci 115:3409. doi: 10.1002/app.31407 CrossRefGoogle Scholar
  20. 20.
    Topal A, Yilmaz M, Kok BV, Kuloglu N, Sengoz B (2011) Evaluation of rheological and image properties of styrene-butadiene-styrene and ethylene-vinyl Acetate polymer modified bitumens. J Appl Polym Sci 122:3122. doi: 10.1002/app.34282 CrossRefGoogle Scholar
  21. 21.
    Fawcett AH, McNally T (2001) Blends of bitumen with polymers having a styrene component. Polym Eng Sci 41:1251. doi: 10.1002/pen.10826 CrossRefGoogle Scholar
  22. 22.
    Chen JS, Huang CC (2007) Fundamental characterization of SBS-modified asphalt mixed with sulfur. J Appl Polym Sci 103:2817. doi: 10.1002/app.24621 CrossRefGoogle Scholar
  23. 23.
    Kok BV, Yilmaz M (2009) The effects of using lime and styrene-butadiene-styrene on moisture sensitivity resistance of hot mix asphalt. Constr Build Mater 23:1999. doi: 10.1016/j.conbuildmat.2008.08.019 CrossRefGoogle Scholar
  24. 24.
    Tayfur S, Ozen H, Aksoy A (2007) Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr Build Mater 21:328. doi: 10.1016/j.conbuildmat.2005.08.014 CrossRefGoogle Scholar
  25. 25.
    Wang T, Yi T, Yuzhen Z (2010) The compatibility of SBS-modified asphalt. Pet Sci Technol 28:764. doi: 10.1080/10916460902937026 CrossRefGoogle Scholar
  26. 26.
    Wang Q, Liao MY, Wang YR, Ren Y (2007) Characterization of end-functionalized styrene-butadiene-styrene copolymers and their application in modified asphalt. J Appl Polym Sci 103:8. doi: 10.1002/app.23867 CrossRefGoogle Scholar
  27. 27.
    Fu HY, Xie LD, Dou DY, Li LF, Yu M, Yao SD (2007) Storage stability and compatibility of asphalt binder modified by SBS graft copolymer. Constr Build Mater 21:1528. doi: 10.1016/j.conbuildmat.2006.03.008 CrossRefGoogle Scholar
  28. 28.
    Cong PL, Chen SF, Chen HX (2011) Preparation and properties of bitumen modified with the maleic anhydride grafted styrene-butadiene-styrene triblock copolymer. Polym Eng Sci 51:1273. doi: 10.1002/pen.21934 CrossRefGoogle Scholar
  29. 29.
    Zhang F, Yu JY, Wu SP (2010) Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts. J Hazard Mater 182:507. doi: 10.1016/j.jhazmat.2010.06.061 CrossRefGoogle Scholar
  30. 30.
    Sun DQ, Ye F, Shi FZ, Lu WM (2006) Storage stability of SBS-modified road asphalt: preparation, morphology, and rheological properties. Pet Sci Technol 24:1067. doi: 10.1081/lft-200048186 CrossRefGoogle Scholar
  31. 31.
    Ouyang C, Wang SF, Zhang Y, Zhang YX (2005) Preparation and properties of styrene-butadiene-styrene copolymer/kaolinite clay compound and asphalt modified with the compound. Polym Degrad Stab 87:309. doi: 10.1016/j.polymdegradstab.2004.08.014 CrossRefGoogle Scholar
  32. 32.
    Yu JY, Wang L, Zeng X, Wu SP, Li B (2007) Effect of montmorillonite on properties of styrene-butadiene-styrene copolymer modified bitumen. Polym Eng Sci 47:1289. doi: 10.1002/pen.20802 CrossRefGoogle Scholar
  33. 33.
    Silva SL, Silva AMS, Ribeiro JC, Martins FG, Da Silva FA, Silva CM (2011) Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: a review. Anal Chim Acta 707:18. doi: 10.1016/j.aca.2011.09.010 CrossRefGoogle Scholar
  34. 34.
    Chiaberge S, Guglielmetti G, Montanari L et al (2009) Investigation of asphaltene chemical structural modification induced by thermal treatments. Energy Fuels 23:4486. doi: 10.1021/ef900206n CrossRefGoogle Scholar
  35. 35.
    Alboudwarej H, Jakher RK, Svrcek WY, Yarranton HW (2004) Spectrophotometric measurement of asphaltene concentration. Pet Sci Technol 22:647. doi: 10.1081/lft-120034206 CrossRefGoogle Scholar
  36. 36.
    Painter PC, Sobkowiak M, Youtcheff J (1987) FT-IR study of hydrogen bonding in coal. Fuel 66:973. doi: 10.1016/0016-2361(87)90338-3 CrossRefGoogle Scholar
  37. 37.
    Anisimov MA, Yudin IK, Nikitin V et al (1995) Asphaltene aggregation in hydrocarbon solutions studied by photon correlation spectroscopy. J Phys Chem 99:9576. doi: 10.1021/j100023a040 CrossRefGoogle Scholar
  38. 38.
    Acevedo S, Mendez B, Rojas A, Layrisse I, Rivas H (1985) Asphaltenes and resins from the Orinoco basin. Fuel 64:1741. doi: 10.1016/0016-2361(85)90402-8 CrossRefGoogle Scholar
  39. 39.
    Wilt BK, Welch WT, Rankin JG (1998) Determination of asphaltenes in petroleum crude oils by Fourier transform infrared spectroscopy. Energy Fuels 12:1008. doi: 10.1021/ef980078p CrossRefGoogle Scholar
  40. 40.
    Gentzis T, Rahimi PM (2003) A microscopic approach to determine the origin and mechanism of coke formation in fractionation towers. Fuel 82:1531. doi: 10.1016/S0016-2361(03)00032-2 CrossRefGoogle Scholar
  41. 41.
    Bartholdy J, Andersen SI (2000) Changes in asphaltene stability during hydrotreating. Energy Fuels 14:52. doi: 10.1021/ef990121o CrossRefGoogle Scholar
  42. 42.
    Bouhadda Y, Bormann D, Sheu E, Bendedouch D, Krallafa A, Daaou M (2007) Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction. Fuel 86:1855. doi: 10.1016/j.fuel.2006.12.006 CrossRefGoogle Scholar
  43. 43.
    Daaou M, Bendedouch D, Bouhadda Y, Vernex-Loset L, Modaressi A, Rogalski M (2009) Explaining the flocculation of Hassi Messaoud asphaltenes in terms of structural characteristics of monomers and aggregates. Energy Fuels 23:5556. doi: 10.1021/ef900596y CrossRefGoogle Scholar
  44. 44.
    Douda J, Llanos ME, Alvarez R, Bolanos JN (2004) Structure of maya asphaltene-resin complexes through the analysis of soxhlet extracted fractions. Energy Fuels 18:736. doi: 10.1021/ef034057t CrossRefGoogle Scholar
  45. 45.
    Wang XM, Guo JJ, Yang XW, Xu BS (2009) Monodisperse carbon microspheres synthesized from asphaltene. Mater Chem Phys 113:821. doi: 10.1016/j.matchemphys.2008.08.053 CrossRefGoogle Scholar
  46. 46.
    Natarajan A, Mahavadi SC, Natarajan TS, Masliyah JH, Xu ZH (2011) Preparation of solid and hollow asphaltene fibers by single step electrospinning. J Eng Fiber Fabr 6:1Google Scholar
  47. 47.
    Wu HC, Kessler MR (2015) Asphaltene: structural characterization, molecular functionalization, and application as a low-cost filler in epoxy composites. RSC Adv 5:24264. doi: 10.1039/c5ra00509d CrossRefGoogle Scholar
  48. 48.
    Tong JD, Jerôme R (2000) Synthesis of poly(methyl methacrylate)-b-poly(n-butyl acrylate)-b-poly(methyl methacrylate) triblocks and their potential as thermoplastic elastomers. Polymer 41:2499. doi: 10.1016/S0032-3861(99)00412-7 CrossRefGoogle Scholar
  49. 49.
    Nojima S, Roe RJ (1987) Effect of molecular weight of added polystyrene on the order-disorder transition of styrene-butadiene diblock copolymer. Macromolecules 20:1866. doi: 10.1021/ma00174a029 CrossRefGoogle Scholar
  50. 50.
    Fröhlich J, Niedermeier W, Luginsland HD (2005) The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos A 36:449. doi: 10.1016/j.compositesa.2004.10.004 CrossRefGoogle Scholar
  51. 51.
    Basseri G, Mazidi MM, Hosseini F, Aghjeh MKR (2014) Relationship among microstructure, linear viscoelastic behavior and mechanical properties of SBS triblock copolymer-compatibilized PP/SAN blend. Polym Bull 71:465. doi: 10.1007/s00289-013-1071-4 CrossRefGoogle Scholar
  52. 52.
    Murugan P, Mahinpey N, Mani T (2009) Thermal cracking and combustion kinetics of asphaltenes derived from Fosterton oil. Fuel Process Technol 90:1286. doi: 10.1016/j.fuproc.2009.06.008 CrossRefGoogle Scholar
  53. 53.
    Su TT, Jiang H, Gong H (2009) Thermal stabilities and thermal degradation kinetics of a styrene-butadiene-styrene star block copolymer. Polym Plast Technol Eng 48:535. doi: 10.1080/03602550902824341 CrossRefGoogle Scholar
  54. 54.
    Lu L, Yu HY, Wang SF, Zhang Y (2009) Thermal degradation behavior of styrene-butadiene-styrene tri-block copolymer/multiwalled carbon nanotubes composites. J Appl Polym Sci 112:524. doi: 10.1002/app.29414 CrossRefGoogle Scholar
  55. 55.
    Fu BX, Lee A, Haddad TS (2004) Styrene-butadiene-styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 37:5211. doi: 10.1021/ma049753m CrossRefGoogle Scholar
  56. 56.
    Zhu J, Birgisson B, Kringos N (2014) Polymer modification of bitumen: advances and challenges. Eur Polym J 54:18. doi: 10.1016/j.eurpolymj.2014.02.005 CrossRefGoogle Scholar
  57. 57.
    Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B 39:933. doi: 10.1016/j.compositesb.2008.01.002 CrossRefGoogle Scholar
  58. 58.
    Zhu ZK, Yang Y, Yin J, Qi ZN (1999) Preparation and properties of organosoluble polyimide/silica hybrid materials by sol–gel process. J Appl Polym Sci 73:2977. doi: 10.1002/(sici)1097-4628(19990929)73:14<2977:aid-app22>;2-j CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hongchao Wu
    • 1
  • Vijay Kumar Thakur
    • 3
  • Michael R. Kessler
    • 1
    • 2
    • 3
  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  2. 2.Ames LaboratoryUS Department of EnergyAmesUSA
  3. 3.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations