Journal of Materials Science

, Volume 51, Issue 5, pp 2338–2346 | Cite as

Electrophoretic deposition of hydroxyapatite and hydroxyapatite–alginate on rapid prototyped 3D Ti6Al4V scaffolds

  • Vinayaraj Ozhukil KollathEmail author
  • Qiang Chen
  • Steven Mullens
  • Jan Luyten
  • Karl Traina
  • Aldo R. Boccaccini
  • Rudi ClootsEmail author
Original Paper


The advantage of using bioceramic particles coated on porous three-dimensional structures is still unexplored in the purpose of improving the osteoinduction of hybrid metallic scaffold implants in vivo. In this study, we evaluate electrophoretic deposition (EPD) to coat porous Ti6Al4V scaffolds with hydroxyapatite (HA). Scaffolds were shaped in different open structures with a horizontal shift in fiber stacking. They were produced using three-dimensional fiber deposition method and were coated by EPD with HA powder (d 10 = 1.7, d 50 = 5.7 and d 90 = 18 µm) suspended in ethanol or butanol at different concentration, DC voltage, and time. A composite HA–alginate was also used to coat the scaffolds. Alginate was used as a binder, and the coating properties (homogeneity, thickness, cracks, continuity, etc.) were compared to coatings obtained from pure HA suspensions. Voltage and time of deposition effects were studied between 10 and 140 V and 10 and 120 s, respectively. Coating thickness and density with respect to the depth of the porous structure were studied by observing cross sections using scanning electron microscopy and image processing analysis. HA–alginate combination resulted in a homogeneous and deeper dense layer of HA. This work also points to the characteristics of HA–alginate composite as a superior alternative to pure HA coating which needs an appropriate thermal treatment for adequate substrate adhesion.


Alginate EtOH Wire Electrical Discharge Machine Porous Scaffold BuOH 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the technical support from D. Vanhoyweghen, M. Schoeters, M. Gysen, I. Thijs, and R. Kemps in sample preparation and characterizations. VOK wishes to thank Dr. M Sharma for proof reading the manuscript and acknowledges the Financial support from University of Liège and VITO.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2015_9543_MOESM1_ESM.docx (605 kb)
Supplementary material 1 (DOCX 604 kb)


  1. 1.
    Luyten J, Thijs I, Ravelingien M, Mullens S (2011) Bone engineering with porous ceramics and metals. Adv Eng Mater 13:1002–1007. doi: 10.1002/adem.201100016 CrossRefGoogle Scholar
  2. 2.
    Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5:1137–1158. doi: 10.1098/rsif.2008.0151 CrossRefGoogle Scholar
  3. 3.
    Cadosch D, Chan E, Gautschi OP, Filgueira L (2009) Metal is not inert: Role of metal ions released by biocorrosion in aseptic loosening–current concepts. J Biomed Mater Res A 91:1252–1262. doi: 10.1002/jbm.a.32625 CrossRefGoogle Scholar
  4. 4.
    Barradas AMC, Yuan H, Van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials : current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater 21:407–429Google Scholar
  5. 5.
    Zhang Q, Leng Y, Xin R (2005) A comparative study of electrochemical deposition and biomimetic deposition of calcium phosphate on porous titanium. Biomaterials 26:2857–2865. doi: 10.1016/j.biomaterials.2004.08.016 CrossRefGoogle Scholar
  6. 6.
    Yang Y, Kim K-H, Ong JL (2005) A review on calcium phosphate coatings produced using a sputtering process–an alternative to plasma spraying. Biomaterials 26:327–337. doi: 10.1016/j.biomaterials.2004.02.029 CrossRefGoogle Scholar
  7. 7.
    Jiang G, Shi D (1998) Coating of hydroxyapatite on highly porous Al2O3 substrate for bone substitutes. J Biomed Mater Res 43:77–81. doi: 10.1002/(SICI)1097-4636(199821)43:1<77::AID-JBM9>3.0.CO;2-J CrossRefGoogle Scholar
  8. 8.
    Braem A, Chaudhari A, Vivan Cardoso M et al (2014) Peri- and intra-implant bone response to microporous Ti coatings with surface modification. Acta Biomater 10:986–995. doi: 10.1016/j.actbio.2013.10.017 CrossRefGoogle Scholar
  9. 9.
    Yu P, Lu F, Zhu W et al (2014) Bio-inspired citrate functionalized apatite coating on rapid prototyped titanium scaffold. Appl Surf Sci 313:947–953. doi: 10.1016/j.apsusc.2014.06.113 CrossRefGoogle Scholar
  10. 10.
    Habibovic P, Barre F, Van Blitterswijk CA et al (2002) Biomimetic hydroxyapatite coating on metal implants. J Am Ceram Soc 85:517–522. doi: 10.1111/j.1151-2916.2002.tb00126.x CrossRefGoogle Scholar
  11. 11.
    Chai YC, Truscello S, Van Bael S et al (2011) Perfusion electrodeposition of calcium phosphate on additive manufactured titanium scaffolds for bone engineering. Acta Biomater 7:2310–2319. doi: 10.1016/j.actbio.2010.12.032 CrossRefGoogle Scholar
  12. 12.
    Lopez-Heredia MA, Sohier J, Gaillard C et al (2008) Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials 29:2608–2615. doi: 10.1016/j.biomaterials.2008.02.021 CrossRefGoogle Scholar
  13. 13.
    Chen Q, Cordero-Arias L, Roether JA et al (2013) Alginate/Bioglass® composite coatings on stainless steel deposited by direct current and alternating current electrophoretic deposition. Surf Coat Technol 233:49–56. doi: 10.1016/j.surfcoat.2013.01.042 CrossRefGoogle Scholar
  14. 14.
    Seuss S, Lehmann M, Boccaccini AR (2014) Alternating current electrophoretic deposition of antibacterial bioactive glass-chitosan composite coatings. Int J Mol Sci 15:12231–12242. doi: 10.3390/ijms150712231 CrossRefGoogle Scholar
  15. 15.
    Boccaccini AR, Keim S, Ma R et al (2010) Electrophoretic deposition of biomaterials. J R Soc Interface 7:S581–S613. doi: 10.1098/rsif.2010.0156.focus CrossRefGoogle Scholar
  16. 16.
    Corni I, Ryan MP, Boccaccini AR (2008) Electrophoretic deposition: from traditional ceramics to nanotechnology. J Eur Ceram Soc 28:1353–1367. doi: 10.1016/j.jeurceramsoc.2007.12.011 CrossRefGoogle Scholar
  17. 17.
    Boccaccini AR, Roether JA, Thomas BJC et al (2006) The electrophoretic deposition of inorganic nanoscaled materials. J Ceram Soc Jpn 114:1–14. doi: 10.2109/jcersj.114.1 CrossRefGoogle Scholar
  18. 18.
    Boccaccini AR, Chicatun F, Cho J et al (2007) Carbon nanotube coatings on bioglass-based tissue engineering scaffolds. Adv Funct Mater 17:2815–2822. doi: 10.1002/adfm.200600887 CrossRefGoogle Scholar
  19. 19.
    Meng D, Ioannou J, Boccaccini AR (2009) Bioglass-based scaffolds with carbon nanotube coating for bone tissue engineering. J Mater Sci Mater Med 20:2139–2144. doi: 10.1007/s10856-009-3770-9 CrossRefGoogle Scholar
  20. 20.
    Li JP, de Wijn JR, Van Blitterswijk CA, de Groot K (2006) Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Biomaterials 27:1223–1235. doi: 10.1016/j.biomaterials.2005.08.033 CrossRefGoogle Scholar
  21. 21.
    Dellinger JG, Cesarano J III, Jamison RD (2007) Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering. J Biomed Mater Res A 82:383–394. doi: 10.1002/jbm.a.31072 CrossRefGoogle Scholar
  22. 22.
    Ravelingien M (2010) Development of titanium bone scaffolds with drug delivery system. Dissertation, Ghent UniversityGoogle Scholar
  23. 23.
    Ozhukil Kollath V, Chen Q, Closset R et al (2013) AC vs. DC electrophoretic deposition of hydroxyapatite on titanium. J Eur Ceram Soc. doi: 10.1016/j.jeurceramsoc.2013.04.030 Google Scholar
  24. 24.
    Hamaker HC, Verwey EJW (1940) The role of the forces between the particles in electrodeposition and other phenomena. Trans Faraday Soc 35:180–185CrossRefGoogle Scholar
  25. 25.
    Van der Biest OO, Vandeperre LJ (1999) Electrophoretic deposition of materials. Annu Rev Mater Sci 29:327–352. doi: 10.1146/annurev.matsci.29.1.327 CrossRefGoogle Scholar
  26. 26.
    Wang G, Sarkar P, Nicholson PS (1997) Influence of acidity on the electrostatic stability of alumina suspensions in ethanol. J Am Ceram Soc 80:965–972. doi: 10.1111/j.1151-2916.1997.tb02928.x CrossRefGoogle Scholar
  27. 27.
    Stoppel WL, White JC, Horava SD et al (2011) Transport of biological molecules in surfactant-alginate composite hydrogels. Acta Biomater 7:3988–3998. doi: 10.1016/j.actbio.2011.07.009 CrossRefGoogle Scholar
  28. 28.
    Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloids Surfaces A Physicochem Eng Asp 328:73–78. doi: 10.1016/j.colsurfa.2008.06.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vinayaraj Ozhukil Kollath
    • 1
    • 2
    • 6
    Email author
  • Qiang Chen
    • 3
  • Steven Mullens
    • 2
  • Jan Luyten
    • 4
  • Karl Traina
    • 5
    • 7
  • Aldo R. Boccaccini
    • 3
  • Rudi Cloots
    • 1
    Email author
  1. 1.Department of Chemistry, GREEnMat-LCISUniversity of LiègeLiègeBelgium
  2. 2.Sustainable Materials ManagementFlemish Institute for Technological Research-VITOMolBelgium
  3. 3.Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany
  4. 4.Department of Materials EngineeringKatholieke Universiteit LeuvenLeuvenBelgium
  5. 5.APTISUniversity of LiègeLiègeBelgium
  6. 6.Department of Chemical & Petroleum EngineeringUniversity of CalgaryCalgaryCanada
  7. 7.Galephar MFMarche en FamenneBelgium

Personalised recommendations