Journal of Materials Science

, Volume 51, Issue 5, pp 2283–2291 | Cite as

Local polarization switching in Ba–Ni co-doped BiFeO3 thin films with low rhombohedral-symmetry distortion

  • G. Rojas-George
  • A. Concha-Balderrama
  • H. Esparza-Ponce
  • J. Silva
  • J. T. Elizalde Galindo
  • M. P. Cruz
  • J. J. Gervacio
  • O. A. Graeve
  • G. Herrera
  • L. Fuentes
  • A. Reyes-Rojas
Original Paper


Low rhombohedral-symmetry distortion of (Ba, Ni) co-doped BiFeO3 multiferroic thin films has been achieved on Pt/TiO2/SiO2/Si substrates using RF magnetron sputtering. X-ray diffraction and Rietveld fitting show that the Bi0.75Ba0.25Fe0.975Ni0.025O3 films have an R3c low rhombohedral-symmetry distortion of hexagonal perovskite close to a pseudocubic-type structure and that their crystallographic volume decreases as the sputtering pO2 increases. Ferroelectric characterization and piezoresponse force microscopy demonstrate that the thin films possess ferroelectric domain structure by polarization switching. In addition, the ferroelectric character is connected to FeO6 octahedral distortion because of the incorporation of Ba2+ and Ni2+ in the A and B sites, respectively, changing the stereochemical activity of co-doped BiFeO3 films. Our findings indicate that there is a direct relationship between the sputtering pO2 and the rate of nucleation and growth; as the pO2 is increased, the deposition rate is lower. The maximum magnetic saturation in these thin films was 40 emu/cm3.


BiFeO3 Domain Switching Piezoresponse Force Microscopy BiFeO3 Thin Film Crystallite Size Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jian Y, Jun-Hao C (2008) Progress and prospect for high temperature single-phased magnetic ferroelectrics. Chin Sci Bull 53(14):2097–2112Google Scholar
  2. 2.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1725CrossRefGoogle Scholar
  3. 3.
    Zhang JX, He Q, Trassin M, Luo W, Yi D, Rossell MD, Yu P, You L, Wang CH, Kuo CY, Heron JT, Hu Z, Zeches RJ, Lin HJ, Tanaka A, Chen CT, Tjeng LH, Chu Y-H, Ramesh R (2011) Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3. Phys Rev Lett 107:147602–147606CrossRefGoogle Scholar
  4. 4.
    Qi D, Dho J, Tomov R, Blamire MG, MacManus-Driscoll JL (2005) Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl Phys Lett 86:062903−062905CrossRefGoogle Scholar
  5. 5.
    Choi T, Lee S, Choi YJ, Kiryukhin V, Cheong SW (2009) Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324:63–66CrossRefGoogle Scholar
  6. 6.
    Katiyar RK, Kumar A, Morell G, Scott JF, Katiyar RS (2011) Photovoltaic effect in a wide-area semiconductor-ferroelectric device. Appl Phys Lett 99:092906–092911CrossRefGoogle Scholar
  7. 7.
    Gao F, Chen X, Yin K, Dong S, Ren Z, Yuan F, Yu T, Zou Z, Liu JM (2007) Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 19:2889–2892CrossRefGoogle Scholar
  8. 8.
    Luo J, Maggard PA (2006) Hydrothermal synthesis and photocatalytic activities of SrTiO3-Coated Fe2O3 and BiFeO3. Adv Mater 18:514–517CrossRefGoogle Scholar
  9. 9.
    Lee D, Baek SH, Kim TH, Yoon JG, Folkman CM, Eom CB, Noh TW (2011) Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys Rev B 84:125305–125313CrossRefGoogle Scholar
  10. 10.
    Li M, Zhuge F, Zhu X, Yin K, Wang J, Liu Y, He C, Chen B, Li RW (2010) Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology 21:425202–425206CrossRefGoogle Scholar
  11. 11.
    Wang C, Liu X, Sheng S, Zhou Y, Liu H, Sun Y (2014) Photovoltaic mechanism in Na-substituted BiFeO3 films. J Phys D Appl Phys 47:355104–355110CrossRefGoogle Scholar
  12. 12.
    Simões AZ, Garcia FG, Riccardi CS (2009) Rietveld analysys and electrical properties of lanthanum doped BiFeO3 ceramics. Mater Chem Phys 116(2):305–309CrossRefGoogle Scholar
  13. 13.
    Troyanchuk IO, Mantytskaya OS, Chobot AN, Tereshko NV (2009) Magnetic properties of multiferroics Bi1−xAxFeO3−x/2 (A = Ca, Sr, Pb, Ba). Phys Solid State 51(10):2105–2108CrossRefGoogle Scholar
  14. 14.
    Kharel P, Talebi S, Ramachandran B, Dixit A, Naik VM, Sahana MB, Sudakar C, Naik R, Rao MSR, Lawes G (2009) Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J Phys Condens Matter 21:036001–036006CrossRefGoogle Scholar
  15. 15.
    Khomchenko VA, Kiselev DA, Vieira JM, Jian L, Kholkin AL, Lopes AML, Pogorelov YG, Araujo JP, Maglione M (2008) Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J Appl Phys 103:024105–024110CrossRefGoogle Scholar
  16. 16.
    Das R, Sarkar T, Mandal K (2012) Multiferroic properties of Ba2+ and Gd3+ co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectroscopic analysis. J Phys D Appl Phys 45:455002–455011CrossRefGoogle Scholar
  17. 17.
    Singh P, Sung KD, Park YA, Hur N, Jung JH (2009) Magnetic and electric properties of Ba-doped BiFeO3 epitaxial thin films prepared by pulsed laser deposition. J Korean Phys Soc 55(2):609–612CrossRefGoogle Scholar
  18. 18.
    Huang FZ, Lu XM, Lin WW, Wu XM, Kan Y, Zhu JS (2006) Effect of Nd dopant on magnetic and electric properties of BiFeO3 thin films prepared by metal organic deposition method. Appl Phys Lett 89:242914–242916CrossRefGoogle Scholar
  19. 19.
    Wang Y, Nan CW (2008) Effect of Tb doping on electric and magnetic behavior of BiFeO3 thin films. J Appl Phys 103:024103–024107CrossRefGoogle Scholar
  20. 20.
    Liu J, Li MY, Pei L, Wang J, Yu BF, Wang X, Zhao XZ (2010) Structural and multiferroic properties of the Ce-doped BiFeO3 thin films. J Alloys Compd 493:544–548CrossRefGoogle Scholar
  21. 21.
    Wang Y, Nan CW (2007) Structural and ferroic properties of Zr-doped BiFeO3 thin films. Ferroelectrics 357:172–178CrossRefGoogle Scholar
  22. 22.
    Naganuma H, Miura J, Okamura S (2008) Ferroelectric, electrical and magnetic properties of Cr, Mn Co, Ni, Cu added polycrystalline BiFeO3 films. Appl Phys Lett 93:052901–052903CrossRefGoogle Scholar
  23. 23.
    Cheng GF, Ruan YJ, Huang YH, Wu XS (2013) Structural phase transition and thermal expansion in Bi1-2.5xPr1.5xBaxFeO3 ceramics. J Alloys Compd 566:235–238CrossRefGoogle Scholar
  24. 24.
    Dong H, Liu H, Wang S (2013) Optical anisotropy and blue-shift phenomenon in tetragonal BiFeO3. J Phys D Appl Phys 46:135102–135105CrossRefGoogle Scholar
  25. 25.
    Srivastava A, Singh HK, Awana VPS, Srivastav ON (2013) Enhancement in magnetic and dielectric properties of La and Pr co substituted BiFeO3. J Alloys Compd 552:336−344CrossRefGoogle Scholar
  26. 26.
    Dai Z, Akishige Y (2010) Electrical properties of multiferroic BiFeO3 ceramics synthesized by spark plasma sintering. J Phys D Appl Phys 43:445403–445407CrossRefGoogle Scholar
  27. 27.
    Ghosh S, Dasgupta S, Sen A, Maiti HS (2005) Low temperature synthesis of bismuth ferrite nanoparticles by a ferrioxalate precursor method. Mater Res Bull 40(12):2073–2079CrossRefGoogle Scholar
  28. 28.
    Kim AY, Han SH, Kang HW, Lee HG, Kim JS, Cheon CI (2012) Dielectric and magnetic properties of BiFeO3 ceramics prepared by hydrothermal synthesis. Ceram Int 38S:S397–S401CrossRefGoogle Scholar
  29. 29.
    Das N, Majumdar R, Sen A, Maiti HS (2007) Nanosized bismuth ferrite powder prepared through sonochemical and microemulsion techniques. Mater Lett 61:2100–2104CrossRefGoogle Scholar
  30. 30.
    Sen K, Thakur S, Singh K, Gautam A, Singh M (2011) Room-temperature magnetic studies of La-modified BiFeO3 ceramic. Mater Lett 65:1963–1965CrossRefGoogle Scholar
  31. 31.
    Popa M, Crespo D, Calderon-Moreno JM, Preda S, Fruth V (2007) Synthesis and structural characterization of single-phase BiFeO3 Powders from a polymeric precursor. J Am Ceram Soc 90(9):2723–2727CrossRefGoogle Scholar
  32. 32.
    Wu J, Wang J (2010) BiFeO3 thin films of (111)-orientation deposited on SrRuO3 buffered Pt/TiO2/SiO2/Si (100) substrates. Acta Mater 58(5):1688–1697CrossRefGoogle Scholar
  33. 33.
    Zheng RY, Sim CH, Wang J, Ramakrishna SJ (2008) Effects of SRO buffer layer on multiferroic BiFeO3 thin films. Am Ceram Soc 91:3240–3244CrossRefGoogle Scholar
  34. 34.
    Wu JG, Kang GQ, Liu HJ, Wang J (2009) Ferromagnetic, ferroelectric, and fatigue behavior of (111)-oriented BiFeO3/(Bi1/2Na1/2)TiO3 lead-free bilayered thin films. J Appl Phys Lett 94:172906–172908CrossRefGoogle Scholar
  35. 35.
    Bea H, Bibes M, Barthelémy A, Bouzehouane K, Jacquet E, Khodan A, Contour JP, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D, Viret M (2005) Influence of parasitic phases on the properties of BiFeO3 epitaxial thin films Appl. Phys Lett 87:072508–072510Google Scholar
  36. 36.
    Shelke V, Mazumdar D, Jesse S, Kalinin S, Baddorf A, Gupta A (2012) Ferroelectric domain scaling and switching in ultrathin BiFeO3 films deposited on vicinal substrates. New J Phys 14:053040–053048CrossRefGoogle Scholar
  37. 37.
    Xing W, Ma Y, Ma Z, Bai Y, Chen J, Zhao S (2014) Improved ferroelectric and leakage current properties of Er-doped BiFeO3 thin films derived from structural transformation. Smart Mater Struct 23:085030–085038CrossRefGoogle Scholar
  38. 38.
    Zhou MX, Chen B, Sun H-B, Wan F-G, Li Z-W, Liu J-M, Song F-Q, Wang G-H (2013) Local electrical conduction in polycrystalline La-doped BiFeO3 thin films. Nanotechnology 24:225702–225707CrossRefGoogle Scholar
  39. 39.
    Guo Y, Guo B, Dong W, Li H, Liu H (2013) Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films. Nanotechnology 24:275201–275208CrossRefGoogle Scholar
  40. 40.
    Chen P, Podraza NJ, Xu XS, Melville A, Vlahos E, Gopalan V, Ramesh R, Schlom DG, Musfeldt JL (2010) Optical properties of quasi-tetragonal BiFeO3 thin films. Appl Phys Lett 96:131907–131909CrossRefGoogle Scholar
  41. 41.
    Liu YT, Ku CS, Chiu SJ, Lee HY, Chen SY (2014) Ultrathin oriented BiFeO3 films from deposition of atomic layers with greatly improved leakage and ferroelectric properties. ACS Appl Mater Interfaces 6:443–449CrossRefGoogle Scholar
  42. 42.
    Ponzoni C, Rosa R, Cannio M, Buscaglia V, Finocchio E, Nanni P, Leonelli CJ (2013) Electrophoretic deposition of multiferroic BiFeO3 sub-micrometric particles from stabilized suspensions. Eur Ceram Soc 33:1325–1333CrossRefGoogle Scholar
  43. 43.
    Wu J, Wang J, Xiao D, Zhu J (2012) A method to improve electrical properties of BiFeO3 thin films. ACS Appl Mater Interfaces 4:1182–1185CrossRefGoogle Scholar
  44. 44.
    Zhao YJ, Yin ZG, Zhang XW, Fu Z, Sun BJ, Wang JX, Wu JL (2014) Heteroepitaxy of tetragonal BiFeO3 on hexagonal sapphire(0001). ACS Appl Mater Interfaces 6:2639–2646CrossRefGoogle Scholar
  45. 45.
    Rojas-George G, Silva J, Castañeda R, Lardizábal D, Graeve OA, Fuentes L, Reyes-Rojas A (2014) Modifications in the rhombohedral degree of distortion and magnetic properties of Ba-doped BiFeO3 as a function of synthesis methodology. Mater Chem Phys 146:73–81CrossRefGoogle Scholar
  46. 46.
    James RW (1967) In the optical principles of the diffraction of X-rays. Bell, London, p 34Google Scholar
  47. 47.
    TOPAS, General Profile and Structure Analysis Software for Powder Diffraction Data, V4.2, Bruker AXS GmbH, Karlsruhe, GermanyGoogle Scholar
  48. 48.
    Ke Qingqing, Kumar Amit, Lou Xiaojie, Feng Yuan Ping, Zeng Kaiyang, Caid Yongqing, Wang John (2015) Microstructural evolution of charged defects in the fatigue process of polycrystalline BiFeO3 thin films. Acta Mater 82:190–197CrossRefGoogle Scholar
  49. 49.
    Tang Xianwu, Zhu Xuebin, Dai Jianming, Sun Yuping (2013) Self-limited grain growth, dielectric, leakage and ferroelectric properties of nanocrystalline BiFeO3 thin films by chemical solution deposition. Acta Mater 61:1739–1747CrossRefGoogle Scholar
  50. 50.
    Zeches RJ, Rossell MD, Zhang JX, Hatt AJ, He Q, Yang C-H, Kumar A, Wang CH, Melville A, Adamo C, Sheng G, Chu Y-H, Ihlefeld JF, Erni R, Ederer C, Gopalan V, Chen LQ, Schlom DG, Spaldin NA, Martin LW, Ramesh R (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326:977–980CrossRefGoogle Scholar
  51. 51.
    Lee C, Wu JM (2007) Effect of film thickness on interface and electric properties of BiFeO3 thin films. Appl Surf Sci 253:7069–7073CrossRefGoogle Scholar
  52. 52.
    Yakovlev S, Zekonyte J, Solterbeck CH, Es-Souni M (2005) Interfacial effects on the electrical properties of multiferroic BiFeO3/Pt/Si thin film heterostructures. Thin Solid Films 493:24–29CrossRefGoogle Scholar
  53. 53.
    Wang X, Yan B, Dai Z, Liu M, Liu H (2011) Enhanced ferroelectric properties of Gd- substitution BiFeO3 thin films prepared by Sol–Gel process. Ferroelectrics 410:96–101CrossRefGoogle Scholar
  54. 54.
    Wang C, Takahashi M, Fujino H, Zhao X, Kume E, Horiuchi T, Sakaib S (2006) Leakage current of multiferroic (Bi0.6Tb0.3La0.1)FeO3 thin films grown at various oxygen pressures by pulsed laser deposition and annealing effect. J Appl Phys 99:054104–054108CrossRefGoogle Scholar
  55. 55.
    Xiao XH, Zhu J, Li YR, Luo WB, Yu BF, Fan LX, Ren F, Liu C, Jiang CZ (2007) Greatly reduced leakage current in BiFeO3 thin film by oxygen ion implantation. J Phys D Appl Phys 40:5775–5777CrossRefGoogle Scholar
  56. 56.
    Gonzalez AHM, Simões AZ, Cavalcante LS, Longo E, Varela JA, Riccardi CS (2007) Soft chemical deposition of BiFeO3 multiferroic thin films. Appl Phys Lett 90:052906–052908CrossRefGoogle Scholar
  57. 57.
    Puli VS, Pradhan DK, Katiyar RK, Coondoo I, Panwar N, Misra P, Chrisey DB, Scott JF, Katiyar RS (2014) Photovoltaic effect in transition metal modified polycrystalline BiFeO3 thin films. J Phys D Appl Phys 47:075502–075507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • G. Rojas-George
    • 1
  • A. Concha-Balderrama
    • 1
  • H. Esparza-Ponce
    • 1
  • J. Silva
    • 2
  • J. T. Elizalde Galindo
    • 2
  • M. P. Cruz
    • 3
  • J. J. Gervacio
    • 3
  • O. A. Graeve
    • 4
  • G. Herrera
    • 1
  • L. Fuentes
    • 1
  • A. Reyes-Rojas
    • 1
  1. 1.Laboratorio Nacional de NanotecnologíaCentro de Investigación en Materiales Avanzados S.C. (CIMAV)ChihuahuaMexico
  2. 2.Universidad Autónoma de Ciudad JuárezCiudad Juárez, ChihuahuaMexico
  3. 3.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  4. 4.Department of Mechanical and Aerospace EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations