Journal of Materials Science

, Volume 51, Issue 3, pp 1562–1571 | Cite as

Resolving topography of an electron beam-sensitive oxalate-phosphate-amine metal–organic framework (OPA-MOF)

Original Paper

Abstract

Scanning electron microscopy (SEM) has, for many years, been the favoured method to gain insights into morphology, micro- and surface structure of new materials, thus development of SEM instruments and modes of use has been rapid. Yet, high-quality, charge artefact-free SEM-representation of highly beam-sensitive non-conductive hybrid metal–organic frameworks (MOF) remains challenging, particularly if access to highly specialised instrumentation is limited—a situation many researchers face. This study details a systematic approach taken to determine the appropriate instrument operating conditions and sample preparation methods for characterisation of a oxalate-phosphate-amine MOF (OPA-MOF) under conventional high-vacuum SEM conditions. We show that a double-coating method adapted from biological sciences, where a carbon coating (≤15 nm) is followed by a thin gold coating (~3–5 nm), enables charge- and damage-free imaging of the electron beam-sensitive OPA-MOF. Details of micro-topography are sufficiently resolved for intended purposes (~100 nm) and are not unduly masked by the coating.

References

  1. 1.
    Danilatos GD (1988) Foundations of environmental scanning electron microscopy. Adv Electron Electron Phys. doi:10.1016/S0065-2539(08)60902-6 Google Scholar
  2. 2.
    Danilatos GD, Robinson VNE (1979) Principles of scanning electron microscopy at high specimen chamber pressures. Scanning 2(2):72–82CrossRefGoogle Scholar
  3. 3.
    Donald AM (2003) The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat Mater 2(8):511–516. doi:10.1038/nmat898 CrossRefGoogle Scholar
  4. 4.
    Stokes DJ (2003) Recent advances in electron imaging, image interpretation and applications: environmental scanning electron microscopy. Philos Trans Royal Soc A 361(1813):2771–2787. doi:10.1098/rsta.2003.1279 CrossRefGoogle Scholar
  5. 5.
    Peters KR, Firstein LA, Noz A (1992) Environmental SEM and conventional SEM imaging of electron-sensitive resist: contrast quality and metrological applications. Microelectron Eng 17(1–4):455–458. doi:10.1016/0167-9317(92)90093-7 CrossRefGoogle Scholar
  6. 6.
    Danilatos GD (1993) Bibliography of environmental scanning electron microscopy. Microsc Res Tech 25(5–6):529–534CrossRefGoogle Scholar
  7. 7.
    Mahler A, Reches M, Rechter M, Cohen S, Gazit E (2006) Rigid, self-assembled hydrogel composed of a modified aromatic dipeptide. Adv Mater 18(11):1365–1370. doi:10.1002/adma.200501765 CrossRefGoogle Scholar
  8. 8.
    Klang V, Valenta C, Matsko NB (2013) Electron microscopy of pharmaceutical systems. Micron 44(1):45–74. doi:10.1016/j.micron.2012.07.008 CrossRefGoogle Scholar
  9. 9.
    Postek MT, Vladár AE (2013) Does your SEM really tell the truth?—how would you know? Part 1. Scanning 35(6):355–361. doi:10.1002/sca.21075 CrossRefGoogle Scholar
  10. 10.
    Vladar A, Cizmar P, Postek MT (2012) How to get your SEM to perform at its best. Scanning/spie Proceedings 8378Google Scholar
  11. 11.
    Postek MT (1994) Critical issues in scanning electron microscope metrology. J Res Nat Inst Stand Technol 99(5):641–672CrossRefGoogle Scholar
  12. 12.
    Pretorius E (2010) Influence of acceleration voltage on scanning electron microscopy of human blood platelets. Microsc Res Tech 73(3):225–228Google Scholar
  13. 13.
    Stowe S, Parirokh M, Asgary S, Eghbal MJ (2004) The benefits of using low accelerating voltage to assess endodontic instruments by scanning electron microscopy. Aust Endodontic J 30(1):5–10. doi:10.1111/j.1747-4477.2004.tb00157.x CrossRefGoogle Scholar
  14. 14.
    Pawley JB, Erlandsen SL (1989) The case for low voltage high resolution scanning electron microscopy of biological samples. Scanning Microsc Suppl 3:163–178Google Scholar
  15. 15.
    Yañez MJ, Barbosa SE (2003) Changes in particle area measurements due to SEM accelerating voltage and magnification. Microsc Res Tech 61(5):463–468CrossRefGoogle Scholar
  16. 16.
    Pistorius PC, Verma N (2011) Matrix effects in the energy dispersive X-ray analysis of CaO-Al2O3-MgO inclusions in steel. Microsc Microanal 17(6):963–971CrossRefGoogle Scholar
  17. 17.
    Bozzola JJ, Russell LD (1999) Electron microscopy: principles and techniques for biologists. Jones and Bartlett, SudburyGoogle Scholar
  18. 18.
    Echlin P (2009) Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis. Springer, New YorkCrossRefGoogle Scholar
  19. 19.
    Goldstein J (2003) Scanning electron microscopy and X-ray microanalysis. Springer, New YorkCrossRefGoogle Scholar
  20. 20.
    Postek MT, Howard KS, Johnson AH, McMichael KL (1980) Scanning Electron MicroscopyGoogle Scholar
  21. 21.
    Sawyer LC, Grubb DT, Meyers GF (2008) Polymer microscopy. Springer, New YorkGoogle Scholar
  22. 22.
    Toth M, Knowles WR, Thiel BL (2006) Secondary electron imaging of nonconductors with nanometer resolution. Appl Phys Lett 88(2):1–3CrossRefGoogle Scholar
  23. 23.
    Ensikat HJ, Weigent M (2013) Cryo-scanning electron microscopy of plant samples without metal coating, utilizing bulk conductivity. Microsc Anal 27(6):7–10Google Scholar
  24. 24.
    Petrenko VF, Whitworth RW (1999) Physics of ice. Clarendon Press, OxfordGoogle Scholar
  25. 25.
    Ensikat HJ, Weigend M (2014) Creating internal conductivity in dry biological SEM samples by a simple vapour treatment. J Microsc 256(3):226–230. doi:10.1111/jmi.12177 CrossRefGoogle Scholar
  26. 26.
    Anstoetz M (Thesis (in prep)) Susceptibility of a hybrid metal-organic framework oxalate-phosphate- amine (OPA-MOF) to microbial breakdown and its suitability for novel fertiliser applications. Southern Cross University, Lismore, NSW, AustraliaGoogle Scholar
  27. 27.
    Meier DC, Davis JM, Vicenzi EP (2011) An examination of kernite (Na2B4O6(OH)2·3H2O) using X-ray and electron spectroscopies: quantitative microanalysis of a hydrated low-z mineral. Microsc Microanal 17(5):718–727CrossRefGoogle Scholar
  28. 28.
    Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley AC, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart JF, Yaghi OM (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336(6084):1018–1023. doi:10.1126/science.1220131 CrossRefGoogle Scholar
  29. 29.
    Cho K, Ryoo R, Asahina S, Xiao C, Klingstedt M, Umemura A, Anderson MW, Terasaki O (2011) Mesopore generation by organosilane surfactant during LTA zeolite crystallization, investigated by high-resolution SEM and Monte Carlo simulation. Solid State Sci 13(4):750–756. doi:10.1016/j.solidstatesciences.2010.04.022 CrossRefGoogle Scholar
  30. 30.
    Joy DC, Joy CS (1996) Low voltage scanning electron microscopy. Micron 27(3–4):247–263Google Scholar
  31. 31.
    Suga M, Asahina S, Sakuda Y, Kazumori H, Nishiyama H, Nokuo T, Alfredsson V, Kjellman T, Stevens SM, Cho HS, Cho M, Han L, Che S, Anderson MW, Schüth F, Deng H, Yaghi OM, Liu Z, Jeong HY, Stein A, Sakamoto K, Ryoo R, Terasaki O (2014) Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Prog Solid State Chem 42(1–2):1–21. doi:10.1016/j.progsolidstchem.2014.02.001 CrossRefGoogle Scholar
  32. 32.
    Klang V, Matsko NB, Valenta C, Hofer F (2012) Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron 43(2–3):85–103. doi:10.1016/j.micron.2011.07.014 CrossRefGoogle Scholar
  33. 33.
    Probst C, Demers H, Gauvin R (2012) Spatial resolution optimization of backscattered electron images using Monte Carlo simulation. Microsc Microanal 18(3):628–637CrossRefGoogle Scholar
  34. 34.
    Hein LRdO, Campos KAd, Caltabiano PCRdO (2012) Low voltage and variable-pressure scanning electron microscopy of fractured composites. Micron 43(10):1039–1049CrossRefGoogle Scholar
  35. 35.
    Endo A, Yamada M, Kataoka S, Sano T, Inagi Y, Miyaki A (2010) Direct observation of surface structure of mesoporous silica with low acceleration voltage FE-SEM. Colloids Surf A 357(1–3):11–16CrossRefGoogle Scholar
  36. 36.
    Efthimiadis J, Forsyth M, Macfarlane DR (2003) A surface characterisation and microstructural study by scanning electron microscopy of the N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts. J Mater Sci 38(15):3293–3301CrossRefGoogle Scholar
  37. 37.
    Wong RSY, Radhakrishnan AK, Ibrahim TAT, Cheong SK (2012) Delta- and gamma-tocotrienols induce classical ultrastructural apoptotic changes in human T lymphoblastic leukemic cells. Microsc Microanal 18(3):462–469CrossRefGoogle Scholar
  38. 38.
    Bazzana S, Dumrul S, Warzywoda J, Sacco A Jr (2006) Low-voltage high-resolution scanning electron microscope imaging of the uncoated and Cr-coated zeolite Beta. Microporous Mesoporous Mater 92(1–3):165–172CrossRefGoogle Scholar
  39. 39.
    Bera B, Gunda NSK, Mitra SK, Vick D (2012) Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy. Microsc Microanal 18(1):171–178CrossRefGoogle Scholar
  40. 40.
    Dogan M, Dogan AU, Aburub A, Botha A, Wurster DE (2012) Quantitative mineralogical properties (morphology-chemistry-structure) of pharmaceutical grade kaolinites and recommendations to regulatory agencies. Microsc Microanal 18(1):143–151CrossRefGoogle Scholar
  41. 41.
    Liu S, Wei M, Cool P, Van Oers C, Rao J (2011) Influence of surfactant concentration on the surface morphology of hollow silica microspheres and its explanation. Microsc Microanal 17(5):766–771CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia
  2. 2.Marine Ecology Research Centre, School of Environment, Science and EngineeringSouthern Cross UniversityLismoreAustralia

Personalised recommendations