Journal of Materials Science

, Volume 51, Issue 3, pp 1456–1462 | Cite as

Study of the initial stages of defect generation in ion-irradiated MgO at elevated temperatures using high-resolution X-ray diffraction

Original Paper


The initial stages of defect generation in magnesia (MgO) single crystals irradiated with 1.2 MeV Au+ ions at 573, 773, and 1073 K and at different fluences have been studied. High-resolution X-ray diffraction was used to measure the irradiation-induced elastic strain. Point-defect relaxation volumes were computed using density functional theory calculations. The defect concentration was then calculated. It was found to increase with ion fluence at all temperatures, with maximum values being ~0.46 % at 573 K, ~0.24 % at 773 K, and ~0.13 % at 1073 K. The decrease in the maximum strain with increasing temperature indicates a dynamic annealing. The defect generation efficiencies were found to be very low and the values obtained were in the range of ~2.4, 1.2, and 0.6 % at 573, 773, and 1073 K, respectively. An annealing effect due to electronic energy deposition is suspected to explain these low values.


  1. 1.
    Nastasi M, Mayer J, Hirvonen JK (1996) Ion-solid interactions: fundamentals and applications. Cambridge Solid State Science Series, Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Sickafus KE, Kotomin EA, Uberuaga BP (eds) (2007) Radiation effects in solids. Nato Science Series, vol 235. Springer, BerlinGoogle Scholar
  3. 3.
    Rivière JP (1995) Radiation induced point defects and diffusion. In: Misaelides P (ed) Application of particle and laser beams in materials technology. Nato Science Series E, vol 283. Springer, Berlin, pp 53–76CrossRefGoogle Scholar
  4. 4.
    Lang M, Devanathan R, Toulemonde M, Trautmann Ch (2015) Advances in understanding of swift heavy-ion tracks in complex ceramics. Curr Opin Solid State Mater Sci 19(1):39–48CrossRefGoogle Scholar
  5. 5.
    Moll S, Sattonnay G, Thomé L, Jagielski J, Decorse C, Simon P, Monnet I, Weber WJ (2011) Irradiation damage in Gd2Ti2O7 single crystals: ballistic versus ionization processes. Phys Rev B 84:064115CrossRefGoogle Scholar
  6. 6.
    Hj Matzke, Wang LM (1996) High-resolution transmission electron microscopy of ion irradiated uranium oxide. J Nucl Mater 231:155–158CrossRefGoogle Scholar
  7. 7.
    Velisa G, Debelle A, Vincent L, Thomé L, Declémy A, Pantelica D (2010) He implantation in cubic zirconia: deleterious effect of thermal annealing. J Nucl Mater 402(1):87–92CrossRefGoogle Scholar
  8. 8.
    Wendler E, Breeger B, Schubert Ch, Wesch W (1999) Comparative study of damage generation in ion implanted III-V-compounds at temperatures from 20 to 420 K. Nucl Instrum Methods Phys Res B 147:155–165CrossRefGoogle Scholar
  9. 9.
    Davidge RW (1979) Mechanical behavior of ceramics. Cambridge Solid State Science Series, Cambridge University Press, CambridgeGoogle Scholar
  10. 10.
    Macdonald RR, Driscoll MJ (2010) Magnesium oxide: an improved reflector for blanket-free fast reactors. Trans Am Nucl Soc 102:488–489Google Scholar
  11. 11.
    Somiya S (2013) Handbook of advance ceramics: materials, applications, processing and properties. Academic Press, WalthamGoogle Scholar
  12. 12.
    Shikama T, Nishitani T, Kakuta T, Yamamoto S, Kasai S, Narui M, Hodgson E, Reichle R, Brichard B, Krassilinikov A, Snider R, Vayakis G, Costley A, Nagata S, Tsuchiya B, Toh K (2003) Irradiation test of diagnostic components for ITER application in the Japan materials testing reactor. Nucl Fusion 43(7):517–521CrossRefGoogle Scholar
  13. 13.
    Hj Matzke (1982) Radiation damage in crystalline insulators, oxides and ceramic nuclear fuels. Radiat Eff 64(1–4):3–33Google Scholar
  14. 14.
    Youngman RA, Hobbs LW, Mitchell TE (1980) Radiation damage in oxides electron irradiation damage in MgO. J Phys Colloq 41(C6):227–231Google Scholar
  15. 15.
    Sonoda T, Abe H, Kinoshita Ch, Naramoto H (1997) Formation and growth process of defect clusters in magnesia under ion irradiation. Nucl Instrum Methods Phys Res B 127–128:176–180CrossRefGoogle Scholar
  16. 16.
    Kinoshita Ch, Hayashi K, Kitajima S (1984) Kinetics of point defects in electron irradiated MgO. Nucl Instrum Methods Phys Res B 229(1):209–218CrossRefGoogle Scholar
  17. 17.
    Henderson B, Bowens DH (1971) Radiation damage in magnesium oxide. I. Dose dependence of reactor damage. J Phys C 4:1487–1495CrossRefGoogle Scholar
  18. 18.
    Van Sambeek AI (1997) Radiation-enhanced diffusion and defect generation during ion irradiation of MgO and Al2O3. Thesis (PhD), University of Illinois at Urbana-ChampaignGoogle Scholar
  19. 19.
    Uberuaga BP, Smith R, Cleave AR, Henkelman G, Grimes RW, Voter AF, Sickafus KE (2005) Dynamical simulations of radiation damage and defect mobility in MgO. Phys Rev B 71:104102CrossRefGoogle Scholar
  20. 20.
    Gilbert CA, Kenny SD, Smith R, Sanville E (2007) Ab initio study of point defects in magnesium oxide. Phys Rev B 76:184103CrossRefGoogle Scholar
  21. 21.
    Mulroue J, Duffy DM (2011) An ab initio study of the effect of charge localization on oxygen defect formation and migration energies in magnesium oxide. Proc R Soc A 467:2054–2065CrossRefGoogle Scholar
  22. 22.
    Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New York.
  23. 23.
    Zinkle SJ, Kinoshita C (1997) Defect generation in ceramics. J Nucl Mater 251:200–217CrossRefGoogle Scholar
  24. 24.
    Speriosu VS (1981) Kinematical X-ray diffraction in nonuniform crystalline films: strain and damage distributions in ion-implanted garnets. J Appl Phys 52:6094–6103CrossRefGoogle Scholar
  25. 25.
    Rao S, He B, Houska CR (1991) X-ray diffraction analysis of concentration and residual stress gradients in nitrogen-implanted niobium and molybdenum. J Appl Phys 69(12):8111–8118CrossRefGoogle Scholar
  26. 26.
    Debelle A, Declémy A (2010) XRD investigation of the strain/stress state of ion-irradiated crystals. Nucl Instrum Methods Phys Res B 268:1460–1465CrossRefGoogle Scholar
  27. 27.
    Boulle A, Debelle A (2010) Strain-profile determination in ion-implanted single crystals using generalized simulated annealing. J Appl Crystallogr 43:1046–1052CrossRefGoogle Scholar
  28. 28.
    Moll S, Zhang Y, Debelle A, Thomé L, Crocombette JP, Zihua Z, Jagielski J, Weber WJ (2015) Damage processes in MgO irradiated with medium-energy heavy ions. Acta Mater 88:314–322CrossRefGoogle Scholar
  29. 29.
    Speriosu VS, Paine BM, Nicolet MA, Glass HL (1982) X-ray rocking curve study of Si-implanted GaAs, Si, and Ge. Appl Phys Lett 40:604–606CrossRefGoogle Scholar
  30. 30.
    Moll S, Thomé L, Sattonnay G, Debelle A, Vincent L, Garrido F, Jagielski J (2009) Multi-step damage evolution process in cubic zirconia irradiated with MeV ions. J Appl Phys 106:073509CrossRefGoogle Scholar
  31. 31.
    Debelle A, Boulle A, Garrido F, Thomé L (2011) Strain and stress build-up in He-implanted UO2 single crystals: an X-ray diffraction study. J Mater Sci 46:4683–4689. doi:10.1007/s10853-011-5375-1 CrossRefGoogle Scholar
  32. 32.
    Debelle A, Channagiri J, Thomé L, Décamps B, Boulle A, Moll S, Garrido F, Behar M, Jagielski J (2014) Comprehensive study of the effect of the irradiation temperature on the behavior of cubic zirconia. J Appl Phys 115(18):183504CrossRefGoogle Scholar
  33. 33.
    Van Sambeek AI, Averback RS (1996) Cantilever beam stress measurements during ion irradiation. Mater Res Soc Symp Proc 396:137–142CrossRefGoogle Scholar
  34. 34.
    Ehrhart P, Robrock KH, Shober HR (1986) Basic defects in metals. In: Johnson RA, Orlov AN (eds) Physics of radiation effects in crystals. Elsevier, AmsterdamGoogle Scholar
  35. 35.
    Dederichs PH (1973) The theory of diffuse x-ray scattering and its application to the study of point defects and their clusters. J Phys F 3:471–496CrossRefGoogle Scholar
  36. 36.
    Kamminga JD, de Keijser ThH, Delhez R, Mittemeijer EJ (2000) On the origin of stress in magnetron sputtered TiN layers. J Appl Phys 88:6332–6345CrossRefGoogle Scholar
  37. 37.
    Debelle A, Abadias G, Michel A, Jaouen C (2004) Stress field in sputtered thin films: ion irradiation as a tool to induce relaxation and investigate the origin of growth stress. Appl Phys Lett 84(24):5034–5036CrossRefGoogle Scholar
  38. 38.
    Debelle A, Boulle A, Rakotovao F, Moeyaert J, Bachelet C, Garrido F, Thomé L (2013) Influence of elastic properties on the strain induced by ion irradiation in crystalline materials. J Phys D Appl Phys 46(4):045309CrossRefGoogle Scholar
  39. 39.
    Sumino Y, Anderson OL, Suzuki I (1983) Temperature coefficients of elastic constants of single-crystal MgO between 80 and 1300 K. Phys Chem Miner 9:38–46CrossRefGoogle Scholar
  40. 40.
    Sangster MJL, Rowell DK (1981) Calculation of defect energies and volumes in some oxides. Philos Mag A 44:613–624CrossRefGoogle Scholar
  41. 41.
    Scholz C, Ehrhart P (1993) F-centers and oxygen-interstitials in MgO. Mater Res Soc Symp Proc 279:427–432CrossRefGoogle Scholar
  42. 42.
    Hickman BS, Walker DG (1965) Growth of magnesium oxide during neutron irradiation. Philos Mag 11:1101–1108CrossRefGoogle Scholar
  43. 43.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  45. 45.
    Bruneval F, Varvenne C, Crocombette JP, Clouet E (2015) Pressure, relaxation volume, and elastic interactions in charged simulation cells. Phys Rev B 91:024107CrossRefGoogle Scholar
  46. 46.
    Kinchin GH, Pease RS (1955) The displacement of atoms in solids by radiation. Rep Progr Phys 18(1):1CrossRefGoogle Scholar
  47. 47.
    Krefft GB (1977) Ionization-stimulated annealing effects on displacement damage in magnesium oxide. J Vac Sci Technol 14:533–536CrossRefGoogle Scholar
  48. 48.
    Ogiso H, Nakano S, Akedo J (2003) Abnormal distribution of defects introduced into MgO single crystals by MeV ion implantation. Nucl Instrum Methods Phys Res B 206:157–161CrossRefGoogle Scholar
  49. 49.
    Thomé L, Debelle A, Garrido F, Trocellier P, Serruys Y, Velisa G, Miro S (2013) Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam. Appl Phys Lett 102:141906CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM)Univ. Paris-Sud, CNRS, Université Paris-SaclayOrsay CedexFrance
  2. 2.Centro de Micro-Análisis de MaterialesUniversidad Autónoma de MadridMadridSpain
  3. 3.Dpto. de Física AplicadaUniversidad Autónoma de MadridMadridSpain
  4. 4.CEA, DEN, Service de Recherches de Métallurgie PhysiqueGif-sur-YvetteFrance

Personalised recommendations