Journal of Materials Science

, Volume 51, Issue 4, pp 1680–1691 | Cite as

Thermophysical properties of some Ni-based superalloys in the liquid state relevant for solidification processing

  • S. Amore
  • F. Valenza
  • D. Giuranno
  • R. Novakovic
  • G. Dalla Fontana
  • L. Battezzati
  • E. RicciEmail author
HTC 2015


The thermophysical properties, e.g., melting range, specific heat, solid fraction, density, and surface tension of four industrial Ni-based alloys, namely MC-2, CMSX-10, TMS-75, and LEK-94, have been determined within the ground-based experiments program of the ESA MAP ThermoProp project. The tests were performed under reducing atmosphere in order to lower the oxygen contamination. The results obtained have been compared with the corresponding data of Ni-based alloys available in literature. The new experimental data have been analyzed as a function of both temperature and alloy composition and interpreted by means of different thermodynamic models.


Surface Tension Solid Fraction Binary Subsystem Surface Tension Data Surface Tension Isotherm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the European Space Agency (ESA) Microgravity Applications Support Programme (MAP) under Contract No. 4200014306 (AO -99-022 and AO-2009-1020) and by the Italian Space Agency (ASI) under contract n. DC-MIC-2011-036. The authors wish to thank the ThermoProp Team for the fruitful discussions.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Furrer D, Fecht HJ (1999) Ni-based superalloys for turbine discs. JOM 51(1):14–17CrossRefGoogle Scholar
  2. 2.
    Aune R, Battezzati L, Egry I, Etay J, Fecht HJ, Giuranno D, Novakovic R, Passerone A, Ricci E, Schmidt-Hohagen F, Seetharaman S, Wunderlich R (2005) Surface tension measurements of Al–Ni based alloys from ground-based and parabolic flight experiments: results from the thermolab project. Microgravity Sci Technol 18(3/4):73–76Google Scholar
  3. 3.
    Wunderlich R, Fecht HJ, Egry I, Etay J, Battezzati L, Ricci E, Matsushita T, Seetharaman S (2012) Thermophysical properties of a Fe–Cr–Mo alloy in the solid and liquid phase. Steel Res Int 83(1):43–54CrossRefGoogle Scholar
  4. 4.
    Battezzati L, Baricco M, Pascale L (1998) High temperature thermal analysis of Ni–Al alloys around the γ′ composition. Scr Mater 39:87–93CrossRefGoogle Scholar
  5. 5.
    Egry I, Ricci E, Novakovic R, Ozawa S (2010) Surface tension of liquid metals and alloys—recent developments. Adv Colloid Interface Sci 159(2):198–212CrossRefGoogle Scholar
  6. 6.
    Singh RN (1987) Short-range order and concentration fluctuations in binary molten alloys. Can J Phys 65:309–325CrossRefGoogle Scholar
  7. 7.
    Sato A, Yeh AC, Kobayashi T, Yokokawa T, Harada H, Murakumo T, Zhang JX (2007) Fifth generation Ni based single crystal superalloys with superior elevated temperature properties. Energy Mater 2:19–25CrossRefGoogle Scholar
  8. 8.
    Battezzati L, Baldissin D (2008) The Thermolab Project: thermophysical properties of superalloys. High Temp Mater Process 27:423–428CrossRefGoogle Scholar
  9. 9.
    Ricci E, Arato E, Passerone A, Costa P (2005) Oxygen tensioactivity on liquid-metal drops. Adv Colloid Interface Sci 117(1–3):15–32CrossRefGoogle Scholar
  10. 10.
    Maze C, Burnet G (1971) Modifications of a non-linear regression technique used to calculate surface tension from sessile drops. Surf Sci 24:335–342CrossRefGoogle Scholar
  11. 11.
    Iida T, Guthrie RIL (1993) The physical properties of liquid metals, 1st edn. Clarendon Press, OxfordGoogle Scholar
  12. 12.
    Giuranno D, Amore S, Novakovic R, Ricci E (2015) Surface tension and density of RENE N5® and RENE 90® Ni—based superalloys. J Mater Sci 50:3763–3771. doi: 10.1007/s10853-015-8941-0 Google Scholar
  13. 13.
    Plevachuk Y, Egry I, Brillo J, Holland-Moritz D, Kaban I (2007) Density and atomic volume in liquid Al–Fe and Al–Ni binary alloys. Int J Mater Res 98(2):107–111CrossRefGoogle Scholar
  14. 14.
    Ricci E, Amore S, Giuranno D, Novakovic R, Tuissi A, Sobczak S, Nowak R, Korpala B, Bruzda G (2014) Surface tension and density of Si-Ge melts. J Chem Phys 140:214704CrossRefGoogle Scholar
  15. 15.
    Mukai K, Li Z, Mills KC (2005) Prediction of the densities of liquid Ni-based superalloys. Metall Mater Trans 36B:255–262CrossRefGoogle Scholar
  16. 16.
    Li Z, Mills KC, McLean M, Mukai K (2005) Measurement of the density and surface tension of Ni-based superalloys in the liquid and mushy states. Metall Mater Trans 36B:247–254CrossRefGoogle Scholar
  17. 17.
    Giuranno D, Tuissi A, Novakovic R, Ricci E (2010) Surface tension and density of Al–Ni alloys. J Chem Eng Data 55(9):3024–3028CrossRefGoogle Scholar
  18. 18.
    Ansara I, Dupin N, Lukas HL, Sundman B (1997) Thermodynamic assessment of the Al–Ni system. J Alloys Compd 247:20–30CrossRefGoogle Scholar
  19. 19.
    Mukai K, Li Z, Fang L (2004) Measurement of the densities of nickel-based ternary, quaternary and commercial alloys. Mater Trans 45(10):2987–2993CrossRefGoogle Scholar
  20. 20.
    Quested PN, Brooks R, Chapman L, Morrell R, Youssef Y, Mills KC (2009) Measurement and estimation of thermophysical properties of nickel based superalloys. Mater Sci Technol 25(2):154–162CrossRefGoogle Scholar
  21. 21.
    Mills KC, Youssef YM, Li Z, Su Y (2006) Calculation of thermophysical properties of Ni-based superalloys. ISIJ Int 46(5):623–632CrossRefGoogle Scholar
  22. 22.
    Ricci E, Giuranno D, Novakovic R, Matsushita T, Seetharaman S, Brooks R, Chapman LA, Quested PN (2007) Density, surface tension, and viscosity of CMSX-4® superalloy. Int J Thermophys 28:1304–1321CrossRefGoogle Scholar
  23. 23.
    Matsushita T, Fecht HJ, Wunderlich R, Egry I, Seetharaman S (2009) Studies of thermophysical properties of commercial CMSX4 alloy. J Chem Eng Data 54:2584–2592CrossRefGoogle Scholar
  24. 24.
    Aune R, Battezzati L, Brooks R, Egry I, Fecht HJ, Garandet JP, Hayashi M, Mills KC, Passerone A, Quested PN, Ricci E, Schmidt-Hohagen F, Seetharaman S, Vinet B (2005) Thermophysical properties of IN738LC, MM247LC AND CMSX-4 in the liquid and high temperature solid phase. In: Loria EA (ed) International symposium on superalloys 718, 625, 706 and various derivatives, TMS, WarrendaleGoogle Scholar
  25. 25.
    Nowak R, Lanata T, Sobczak N, Ricci E, Giuranno D, Novakovic R, Holland-Moritz D, Egry I (2010) Surface tension of c-TiAl-based alloys. J Mater Sci 45:1993–2001. doi: 10.1007/s10853-009-4061-z CrossRefGoogle Scholar
  26. 26.
    Dupin N, Ansara I, Sundman B (2001) Thermodynamic reassessment of the ternary system Al–Cr–Ni. Calphad 25(2):279–298CrossRefGoogle Scholar
  27. 27.
    N. Dupin (1995) Contribution à l’évaluation thermodynamique des alliages polyconstitués à base de nickel, Lab. de Thermodynamique et de Physco-Chimie Métallurgiques de GrenobleGoogle Scholar
  28. 28.
    Lang G, Laty P, Joud JC, Desré P (1977) Measurement of the surface tension of some fluid metals by different methods. Z Metallkd 68:113–116Google Scholar
  29. 29.
    Naidich YuV, Perevertailo VM, Nevodnik GM (1972) Surface properties of Ni–C and Co–C melts. Izv Russ Akad Nauk Ser Metal 2:22–30Google Scholar
  30. 30.
    Levin ES, Ayushina GD (1971) Russ J Phys Chem 45(6):792–795Google Scholar
  31. 31.
    Lucas LD, Kozakevitch P (1971) Compte rendu du 12e séminaire de Thermodynamique et Physicochimie Métallurgiques ENSEEG-IRSID publié par l’École Nationale Supérieure d’Électrochimie et d’Électrométallurgie de GrenobleGoogle Scholar
  32. 32.
    Novakovic R, Zivkovic D (2005) Thermodynamics and surface properties of liquid Ga-X (X = Sn, Zn) alloys. J Mater Sci 40:2251–2257. doi: 10.1007/s10853-005-1942-7 CrossRefGoogle Scholar
  33. 33.
    Novakovic R (2011) Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys. J Phys 23(1–8):235107Google Scholar
  34. 34.
    Novakovic R, Tanaka T (2006) Bulk and surface properties of Al-Co and Co-Ni liquid alloys. Physica B 371:223–231CrossRefGoogle Scholar
  35. 35.
    Toop GW (1965) Predicting ternary activities using binary data. Trans Metall Soc AIME 233:850–855Google Scholar
  36. 36.
    Plevachuk Yu, Sklyarchuk V, Gerbeth G, Eckert S, Novakovic R (2011) Surface tension and density of liquid Bi-Pb, Bi-Sn and Bi-Pb-Sn eutectic alloys. Surf Sci 605(11–12):1034–1042CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. Amore
    • 1
  • F. Valenza
    • 1
  • D. Giuranno
    • 1
  • R. Novakovic
    • 1
  • G. Dalla Fontana
    • 2
  • L. Battezzati
    • 2
  • E. Ricci
    • 1
    Email author
  1. 1.Consiglio Nazionale delle RicercheIstituto per l’Energetica e le Interfasi (CNR-IENI)GenoaItaly
  2. 2.Dipartimento di ChimicaUniversità di TorinoTurinItaly

Personalised recommendations