Journal of Materials Science

, Volume 51, Issue 1, pp 271–310 | Cite as

A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers

  • Stefanie Utech
  • Aldo R. BoccacciniEmail author
50th Anniversary


There is a growing demand for three-dimensional scaffolds for expanding applications in regenerative medicine, tissue engineering, and cell culture techniques. The material requirements for such three-dimensional structures are as diverse as the applications themselves. A wide range of materials have been investigated in the recent decades in order to tackle these requirements and to stimulate the anticipated biological response. Among the most promising class of materials are inorganic/organic hydrogel composites for regenerative medicine. The generation of synergetic effects by hydrogel composite systems enables the design of materials with superior properties including biological performance, stiffness, and degradation behavior in vitro and in vivo. Here, we review the most important organic and inorganic materials used to fabricate hydrogel composites. We highlight the advantages of combining different materials with respect to their use for biofabrication and cell encapsulation as well as their application as injectable materials for tissue enhancement and regeneration.

Graphical abstract


Graphene Oxide Alginate Lower Critical Solution Temperature Bioactive Glass Calcium Phosphate Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Alkaline phosphatase


Acellular bone matrix


Silver nanoparticles


Biphasic calcium phosphate


Bioactive glass


Morphogenetic protein-2


Recombinant human bone morphogenic proteins


Bone marrow stromal cells




Calcium phosphate (apatite)


Apatitic nanoparticles


Carbon nanotube chain


Carbon nanotube


Cerium oxide nanoparticle


Calcium phosphate cement


Dental pulp stem cell


Extracellular matrix


Engelbreth–Holm–Swarm mouse sarcoma


Elastin-like polypeptide




Fetal bovine serum




Gelatin methacrylate


Gellan gum


Graphene oxide


Hyaluronic acid


Hyaluronic acid-g-chitosan-g-poly(N-isopropylacrylamide)




Human bone marrow-derived mesenchymal stem cells


Carbonated hydroxyapatite


Human fetal osteoblastic cells




Injectable bone substitute


Isoelectric point


Lower critical solution temperature


Mesoporous bioactive glass








Oligo(poly(ethylene glycol) fumarate


Poly(acrylic acid)




Poly(ethylene glycol)


PEG diacrylate


PEG dimethacrylate


Poly(ethylene glycol)-poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)


Poly(2-hydroxyethyl methacrylate)


Poly(lactide ethylene oxide fumarate)


Poly(lactic acid-co-glycolic acid)






Poly(propylene oxide)


Silated hydroxypropylmethylcellulose


Superparamagnetic iron oxide nanoparticles


Tricalcium phosphate


Tissue engineering


Tetracalcium phosphate



S.U. would like to thank the Deutsche Forschungsgemeinschaft (DFG) for their financial support. The authors thank B. Sarker and T. Zehnder (the Institute of Biomaterials, The University of Erlangen-Nuremberg) for stimulating discussions.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lodish H, Berk A, Zipursky LS, Matsudaira P, Baltimore D, Darnell JE (2002) Molecular cell biology. W.H. Freemann and Company, New YorkGoogle Scholar
  2. 2.
    Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B Rev 14:61–86CrossRefGoogle Scholar
  3. 3.
    Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21:745–754CrossRefGoogle Scholar
  4. 4.
    Haycock JW (2011) 3D cell culture. Springer Science and Business Media, New YorkCrossRefGoogle Scholar
  5. 5.
    Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453CrossRefGoogle Scholar
  6. 6.
    Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRefGoogle Scholar
  7. 7.
    Carrow JK, Gaharwar AK (2015) Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys 216:248–264CrossRefGoogle Scholar
  8. 8.
    Vashist A, Ahmad S (2015) Hydrogels in tissue engineering: scope and applications. Curr Pharm Biotechnol 16:606–620CrossRefGoogle Scholar
  9. 9.
    Orive G, Hernández RM, Gascón AR, Calafiore R, Chang TMS, de Vos P, Hortelano G, Hunkeler D, Lacík I, Shapiro AMJ, Pedraz JL (2003) Cell encapsulation: promise and progress. Nat Med 9:104–107CrossRefGoogle Scholar
  10. 10.
    Uludag H, de Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64CrossRefGoogle Scholar
  11. 11.
    Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnol Lett 32:733–742CrossRefGoogle Scholar
  12. 12.
    Zhao X, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci USA 108:67–72CrossRefGoogle Scholar
  13. 13.
    Cezar CA, Kennedy SM, Mehta M, Weaver JC, Gu L, Vandenburgh H, Mooney DJ (2014) Biphasic ferrogels for triggered drug and cell delivery. Adv Healthc Mater 3:1869–1876CrossRefGoogle Scholar
  14. 14.
    Ferris CJ, Gilmore KG, Wallace GG, In Het Panhuis M (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97:4243–4258CrossRefGoogle Scholar
  15. 15.
    Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp J 19:353–364CrossRefGoogle Scholar
  16. 16.
    Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF (2010) Biofabrication to build the biology-device interface. Biofabrication 2:022002CrossRefGoogle Scholar
  17. 17.
    Billiet T, Vandenhaute M, Schelfhout J, vanVlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041CrossRefGoogle Scholar
  18. 18.
    Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287:1–11CrossRefGoogle Scholar
  19. 19.
    Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci. doi: 10.1002/advs.201400010 Google Scholar
  20. 20.
    Kretlow JD, Mikos AG (2007) Review: mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng 13:927–938CrossRefGoogle Scholar
  21. 21.
    Sanchez C, Julián B, Belleville P, Popall M (2015) Applications of hybrid organic-inorganic nanocomposites. J Mater Chem 15:3559–3592CrossRefGoogle Scholar
  22. 22.
    Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32:354–358CrossRefGoogle Scholar
  23. 23.
    Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776CrossRefGoogle Scholar
  24. 24.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRefGoogle Scholar
  25. 25.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12CrossRefGoogle Scholar
  26. 26.
    Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124CrossRefGoogle Scholar
  27. 27.
    de las Heras Alarcón C, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285CrossRefGoogle Scholar
  28. 28.
    Jeong B, Gutowska A (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 20:305–311CrossRefGoogle Scholar
  29. 29.
    Huebsch N, Kearney CJ, Zhao X, Kim J, Cezar CA, Suo Z, Mooney DJ (2014) Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc Natl Acad Sci USA 111:9762–9767CrossRefGoogle Scholar
  30. 30.
    Kennedy S, Bencherif S, Norton D, Weinstock L, Mehta M, Mooney DJ (2014) Rapid and extensive collapse from electrically responsive macroporous hydrogels. Adv Healthc Mater 3:500–507CrossRefGoogle Scholar
  31. 31.
    Kearney CJ, Skaat H, Kennedy SM, Hu J, Darnell M, Raimondo TM, Mooney DJ (2015) Switchable release of entrapped nanoparticles from alginate hydrogels. Adv Healthc Mater 4:1634–1639CrossRefGoogle Scholar
  32. 32.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  33. 33.
    Kim JK, Kim HJ, Chung JY, Lee JH, Young SB, Kim YH (2014) Natural and synthetic biomaterials for controlled drug delivery. Arch Pharm Res 37:60–68CrossRefGoogle Scholar
  34. 34.
    Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336:1124–1128CrossRefGoogle Scholar
  35. 35.
    Engel J, Bächinger HP (2005) Structure, stability and folding of the collagen triple helix. Top Curr Chem 247:7–33Google Scholar
  36. 36.
    Walters BD, Stegemann JP (2014) Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 10:1488–1501CrossRefGoogle Scholar
  37. 37.
    Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S (1997) Fibrillar structure and mechanical properties of collagen. J Struct Biol 122:119–122CrossRefGoogle Scholar
  38. 38.
    White DJ, Puranen S, Johnson MS, Heino J (2004) The collagen receptor subfamily of the integrins. Inter J Biochem Cell Biol 36:1405–1410CrossRefGoogle Scholar
  39. 39.
    Heino J (2000) The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol 19:319–323CrossRefGoogle Scholar
  40. 40.
    Brown RA, Wiseman M, Chuo CB, Cheema U, Nazhat SN (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater 15:1762–1770CrossRefGoogle Scholar
  41. 41.
    Bitar M, Salih V, Brown RA, Nazhat SN (2007) Effect of multiple unconfined compression on cellular dense collagen scaffolds for bone tissue engineering. J Mater Sci Mater Med 18:237–244CrossRefGoogle Scholar
  42. 42.
    Hu X, Cebe P, Weiss AS, Omenetto F, Kaplan DL (2012) Protein-based composite materials. Mater Today 15:208–215CrossRefGoogle Scholar
  43. 43.
    Sarker B, Lyer S, Arkudas A, Boccaccini AR (2013) Collagen/silica nanocomposites and hybrids for bone tissue engineering. Nanotechnol Rev 2:427–447Google Scholar
  44. 44.
    Allison DD, Grande-Allen KJ (2006) Hyaluronan: a powerful tissue engineering tool. Tissue Eng 12:2131–2140CrossRefGoogle Scholar
  45. 45.
    Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Healtc Mater 23:H41–H56CrossRefGoogle Scholar
  46. 46.
    Burdick JA, Chung C, Jia X, Randolph MA, Langer R (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6:386–391CrossRefGoogle Scholar
  47. 47.
    Kuo JW, Prestwich GD (2010) Hyaluronic acid. In: Materials of biological origin—materials analysis and implant uses, comprehensive biomaterials. ElsevierGoogle Scholar
  48. 48.
    Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633CrossRefGoogle Scholar
  49. 49.
    Draget KI, Skjåk-Bræk G, Smidsrød O (1997) Alginate based new materials. Int J Biol Macromol 21:47–55CrossRefGoogle Scholar
  50. 50.
    Kong HJ, Kaigler D, Kim K, Mooney DJ (2004) Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5:1720–1727CrossRefGoogle Scholar
  51. 51.
    Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ (2001) Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog 17:945–950CrossRefGoogle Scholar
  52. 52.
    Sarker B, Papageorgiou DG, Silva R, Zehnder T, Gul-E-Noor F, Bertmer M, Kaschta J, Chrissafis K, Detsch R, Boccaccini AR (2014) Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physic-chemical properties. J Mater Chem B 2:1470–1482CrossRefGoogle Scholar
  53. 53.
    Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281CrossRefGoogle Scholar
  54. 54.
    Balakrishnan B, Jayakrishnan A (2005) Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 26:3941–3951CrossRefGoogle Scholar
  55. 55.
    Liao H, Zhang H, Chen W (2009) Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources. J Mater Sci Mater Med 20:1263–1271CrossRefGoogle Scholar
  56. 56.
    Sarker B, Singh R, Silva R, Roether JA, Kaschta J, Detsch R, Schubert DW, Cicha I, Boccaccini AR (2014) Evalulation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogels. PLoS One 9:e107952CrossRefGoogle Scholar
  57. 57.
    Grigore A, Sarker B, Fabry B, Boccaccini AR, Detsch R (2014) Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels. Tissue Eng Part A 20:2140–2150CrossRefGoogle Scholar
  58. 58.
    Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix material. Biomaterials 20:45–53CrossRefGoogle Scholar
  59. 59.
    Hill SE, Ledward DA, Mitchell JR (1998) Functional properties of food macromolecules. Springer, BerlinGoogle Scholar
  60. 60.
    Park H, Park K, Shalaby WSW (2011) Biodegradable hydrogels for drug delivery. CRC Press, Boca RatonGoogle Scholar
  61. 61.
    Atala A, Mooney DJ (2013) Synthetic biodegradable polymer scaffolds. Springer, New YorkGoogle Scholar
  62. 62.
    Pluen A, Netti PA, Jain RK, Berk DA (1999) Diffusion of macromolecules in agarose gels: comparison of linear and globular configuarations. Biophys J 77:542–552CrossRefGoogle Scholar
  63. 63.
    Pernodet N, Maaloum M, Tinland B (1997) Pore size of agarose gels by atomic force microscopy. Electrophoresis 18:55–58CrossRefGoogle Scholar
  64. 64.
    Wang H, Hansen MB, Löwik DWPM, van Hest JCM, Li Y, Jansen JA, Leeuwenburgh SCG (2011) Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels. Adv Healthc Mater 23:H119–H124CrossRefGoogle Scholar
  65. 65.
    Boanini E, Bigi A (2011) Biomimetic gelatin–octacalcium phosphate core–shell microspheres. J Colloid Interface Sci 362:594–599CrossRefGoogle Scholar
  66. 66.
    Bigi A, Panzavolta S, Rubini K (2004) Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials 25:5675–5680CrossRefGoogle Scholar
  67. 67.
    Ross-Murphy SB (1992) Structure and rheology of gelatin gels: recent progress. Polymer 33:2622–2627CrossRefGoogle Scholar
  68. 68.
    Pezron I, Djabourov M, Leblond J (1991) Conformation of gelatin chains in aqueous solutions: 1. A light and small-angle neutron scattering study. Polymer 32:3201–3210CrossRefGoogle Scholar
  69. 69.
    Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I (2008) Occurrence, production, and application of gellan: current state and perspectives. Appl Microbiol Biotechnol 79:889–900CrossRefGoogle Scholar
  70. 70.
    Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Crit Rev Biotechnol 20:177–211CrossRefGoogle Scholar
  71. 71.
    Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20:1133–1142CrossRefGoogle Scholar
  72. 72.
    Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598CrossRefGoogle Scholar
  73. 73.
    Chandy T, Sharma CP (1990) Chitosan-as a biomaterial. Biomater Artif Cells Artif Organs 18:1–24Google Scholar
  74. 74.
    Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386CrossRefGoogle Scholar
  75. 75.
    Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890CrossRefGoogle Scholar
  76. 76.
    Daamen WF, Veerkamp JH, van Hest JC, van Kuppevelt TH (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28:4378–4398CrossRefGoogle Scholar
  77. 77.
    Kundu S (2014) Silk biomaterials for tissue engineering and regenerative medicine. Woodhead Publishing, CambridgeGoogle Scholar
  78. 78.
    Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53CrossRefGoogle Scholar
  79. 79.
    Chien KB, Chung EJ, Shah RN (2014) Investigation of soy protein hydrogels for biomedical applications: materials characterization, drug release, and biocompatibility. J Biomater Appl 28:1085–1096CrossRefGoogle Scholar
  80. 80.
    Paliwal R, Palakurthi S (2014) Zein in controlled drug delivery and tissue engineering. J Control Release 189:108–122CrossRefGoogle Scholar
  81. 81.
    Bailey FE, Koleske JV (2012) Poly(ethylene oxide). Elsevier, LondonGoogle Scholar
  82. 82.
    Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B 49:832–864CrossRefGoogle Scholar
  83. 83.
    Helmy R (2012) Biotechnology—molecular studies and novel applications for improved quality of human life. InTechGoogle Scholar
  84. 84.
    Lin CC, Anseth KS (2008) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26:631–643CrossRefGoogle Scholar
  85. 85.
    Falco EE, Patel M, Fisher JP (2008) Recent developments in cyclic acetal biomaterials for tissue engineering applications. Pharm Res 25:2348–2356CrossRefGoogle Scholar
  86. 86.
    Betz MW, Modi PC, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP (2008) Cyclic acetal hydrogel system for bone marrow stromal cell encapsulation and osteodifferentiation. J Biomed Mater Res A 86:662–670CrossRefGoogle Scholar
  87. 87.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879CrossRefGoogle Scholar
  88. 88.
    Lu S, Anseth KS (1999) Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release. J Control Release 57:291–300CrossRefGoogle Scholar
  89. 89.
    Meyvis TKL, De Smedt SC, Demester J (2000) Influence of the degradation mechanism of hydrogels on their elastic and swelling properties during degradation. Macromolecules 33:4717–4725CrossRefGoogle Scholar
  90. 90.
    Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249CrossRefGoogle Scholar
  91. 91.
    Seiffert S, Weitz DA (2010) Microfluidic fabrication of smart microgels from macromolecular precursors. Polymer 51:5883–5889CrossRefGoogle Scholar
  92. 92.
    Galaec IY, Mattiasson B (1999) “Smart” polymers and what they could do in biotechnology and medicine. Trends Biotechnol 17:335–340CrossRefGoogle Scholar
  93. 93.
    Cooper SL, Bamford CH, Tsuruta T (1995) Polymer biomaterials in solution, as interfaces and as solids. Springer, New YorkGoogle Scholar
  94. 94.
    Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544CrossRefGoogle Scholar
  95. 95.
    Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12:1387–1408CrossRefGoogle Scholar
  96. 96.
    Yoshida T, Lai TC, Kwon GS, Sako K (2013) pH- and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv 10:1497–1513CrossRefGoogle Scholar
  97. 97.
    Bourges X, Weiss P, Daculsi G, Legeay G (2002) Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci 99:215–228CrossRefGoogle Scholar
  98. 98.
    Engineer C, Parikh J, Raval A (2011) Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 25:79–85Google Scholar
  99. 99.
    Lyu SP, Untereker D (2009) Degradability of polymers from implantable biomedical devices. Int J Mol Sci 10:4033–4065CrossRefGoogle Scholar
  100. 100.
    Kilpadi KL, Chang PL, Bellis SL (2001) Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res 57:258–267CrossRefGoogle Scholar
  101. 101.
    Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774CrossRefGoogle Scholar
  102. 102.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55CrossRefGoogle Scholar
  103. 103.
    Mooney E, Mackle JN, Blond DJ, O’Cearbhaill E, Shaw G, Blau WJ, Barry FP, Barron V, Murphy JM (2012) The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials 33:6132–6139CrossRefGoogle Scholar
  104. 104.
    Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283CrossRefGoogle Scholar
  105. 105.
    Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25CrossRefGoogle Scholar
  106. 106.
    Suchanek W, Yoshimura M (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J Mater Res 13:94–117CrossRefGoogle Scholar
  107. 107.
    LeGeros RZ, LeGeros JP (2003) Calcium phosphate ceramics: past, present and future. Key Eng Mater 240–242:3–10CrossRefGoogle Scholar
  108. 108.
    LeGeros RZ (1993) Biodegradation and bioresorption of calcium phosphate ceramics. Clin Mater 14:65–88CrossRefGoogle Scholar
  109. 109.
    Song W, Tian M, Chen F, Tian Y, Wan C, Yu X (2009) The study on the degradation and mineralization mechanism of ion-doped calcium polyphosphate in vitro. J Biomed Mater Res B 89:430–438CrossRefGoogle Scholar
  110. 110.
    Bodhak S, Bose S, Badyopadhyay A (2011) Bone cell-materials interactions on metal-ion doped polarized hydroxyapatite. Mater Sci Eng, C 31:755–761CrossRefGoogle Scholar
  111. 111.
    Rodríguez-Valencia C, López-Álvarez M, Cochón-Cores B, Pereiro I, Serra J, González P (2013) Novel selenium-doped hydroxyapatite coatings for biomedical applications. J Biomed Mater Res A 101:853–861CrossRefGoogle Scholar
  112. 112.
    Hench LL (2015) Opening paper 2015-Some comments on Bioglass: Four Eras of Discovery and Development, Biomed. Glasses 1:1–11CrossRefGoogle Scholar
  113. 113.
    Hench LL (1998) Biocermics. J Am Ceram Soc 81:1705–1728CrossRefGoogle Scholar
  114. 114.
    Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373CrossRefGoogle Scholar
  115. 115.
    Jell G, Stevens MM (2006) Gene activation by bioactive glasses. J Mater Sci Mater Med 17:997–1002CrossRefGoogle Scholar
  116. 116.
    Day RM (2005) Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 11:768–777CrossRefGoogle Scholar
  117. 117.
    Gorustovich AA, Roether JA, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev 16:199–207CrossRefGoogle Scholar
  118. 118.
    Uo M, Mizuno M, Kuboki Y, Makishima A, Watari F (1998) Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials 19:2277–2284CrossRefGoogle Scholar
  119. 119.
    Hu Q, Li Y, Miao G, Zhao N, Chen X (2014) Size control and biological properties of monodispersed mesoporous bioactive glass sub-micron spheres. RSC Adv 4:22678–22687CrossRefGoogle Scholar
  120. 120.
    Luz GM, Mano JF (2013) Nanoengineering of bioactive glasses: hollow and dense nanospheres. J Nanopart Res 15:1457–1468CrossRefGoogle Scholar
  121. 121.
    Tsigkou O, Labbaf S, Stevens MM, Porter AE, Jones JR (2014) Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv Healthc Mater 3:115–125CrossRefGoogle Scholar
  122. 122.
    Lukowiak A, Lao J, Lacroix J, Nedelec JM (2013) Bioactive glass nanoparticles obtained through sol-gel chemistry. Chem Comm 49:6620–6622CrossRefGoogle Scholar
  123. 123.
    Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissue. Acta Biomater 13:1–15CrossRefGoogle Scholar
  124. 124.
    Saranti A, Koutselas I, Karakassides MA (2006) Bioactive glasses in the system CaO–B2O3–P2O5: preparation, structural study and in vitro evaluation. J Non-Cryst Solids 352:390–398CrossRefGoogle Scholar
  125. 125.
    Liang W, Rahaman MN, Day DE, Marion NW, Riley GC, Mao JJ (2008) Bioactive borate glass scaffold for bone tissue engineering. J Non-Cryst Solids 354:1690–1696CrossRefGoogle Scholar
  126. 126.
    Sepulveda P, Jones JR, Hench LL (2002) Bioactive sol-gel foams for tissue repair. J Biomed Mater Res 59:340–348CrossRefGoogle Scholar
  127. 127.
    Vallet-Regí M (2006) Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. Chemistry 12:5934–5943CrossRefGoogle Scholar
  128. 128.
    Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558CrossRefGoogle Scholar
  129. 129.
    Manzano M, Vallet-Regí M (2010) New developments in ordered mesoporous materials for drug delivery. J Mater Chem 20:5593–5604CrossRefGoogle Scholar
  130. 130.
    Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46:1940–1945CrossRefGoogle Scholar
  131. 131.
    Blaker JJ, Nazhat SN, Boccaccini AR (2004) Development and characterization of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials 25:1319–1329CrossRefGoogle Scholar
  132. 132.
    Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Elsevier, AmsterdamGoogle Scholar
  133. 133.
    Dawson JI, Oreffo ROC (2013) Clay: new opportunites for tissue regeneration and biomaterial design. Adv Mater 25:4069–4086CrossRefGoogle Scholar
  134. 134.
    Dawson JI, Kanczler JM, Yang XB, Attard GS, Oreffo ROC (2011) Clay gels for the delivery of regenerative microenvironments. Adv Mater 23:3304–3308CrossRefGoogle Scholar
  135. 135.
    Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343CrossRefGoogle Scholar
  136. 136.
    Mieszawska AJ, Llamas JG, Vaiana CA, Kadakia MP, Naik RR, Kaplan DL (2011) Clay-enriched silk biomaterials for bone formation. Acta Biomater 7:3036–3041CrossRefGoogle Scholar
  137. 137.
    Maisanaba S, Pichardo S, Puerto M, Gutiérrez-Praene D, Cameán AM, Jos A (2015) Toxicological evaluation of clay minerals and derived nanocomposites: a review. Environ Res 138:233–254CrossRefGoogle Scholar
  138. 138.
    Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353CrossRefGoogle Scholar
  139. 139.
    Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalized carbon nanotubes. Chem Comm 7:571–577CrossRefGoogle Scholar
  140. 140.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRefGoogle Scholar
  141. 141.
    Liu K, Zhang JJ, Cheng FF, Zheng TT, Wang C, Zhu JJ (2011) Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J Mater Chem 21:12034–12040CrossRefGoogle Scholar
  142. 142.
    Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787CrossRefGoogle Scholar
  143. 143.
    Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42:1097–1107CrossRefGoogle Scholar
  144. 144.
    Tan MC, Chow GM, Ren L (2009) Nanostructured materials for biomedical applications. Transworld Research Network, TrivandrumGoogle Scholar
  145. 145.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  146. 146.
    Pagé M (2002) Tumor targeting in cancer therapy. Springer, New YorkCrossRefGoogle Scholar
  147. 147.
    Wahajuddin Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed 7:3445–3471CrossRefGoogle Scholar
  148. 148.
    Schubert D, Dargusch R, Raitano J, Chang SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91CrossRefGoogle Scholar
  149. 149.
    Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Complementary action of antioxidant gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742CrossRefGoogle Scholar
  150. 150.
    Tsai YY, Oca-Cossio J, Agering K, Simpson NE, Atkinson MA, Wasserfall CH, Constantinidis I, Sigmung W (2007) Novel synthesis of cerium oxide nanoparticles for free radical scavenging. Nanomedicine 2:325–332CrossRefGoogle Scholar
  151. 151.
    Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–1420CrossRefGoogle Scholar
  152. 152.
    Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95CrossRefGoogle Scholar
  153. 153.
    Strong LE, Dahotre SN, West JL (2014) Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery. J Control Release 178:63–68CrossRefGoogle Scholar
  154. 154.
    Boccaccini AR, Blaker JJ (2005) Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2:303–317CrossRefGoogle Scholar
  155. 155.
    García-Astrain C, Chen C, Burón M, Palomares T, Eceiza A, Fruk L, Corcuera MA, Gabilondo N (2015) Biocompatible hydrogel nanocomposites with covalently embedded silver nanoparticles. Biomacromolecules 16:1301–1310CrossRefGoogle Scholar
  156. 156.
    Alvarez GS, Hélary C, Mebert AM, Wang X, Coradin T, Desimone MF (2014) Antibiotic-loaded silica nanoparticles-collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention. J Mater Chem B 2:4660–4670CrossRefGoogle Scholar
  157. 157.
    Zeng R, Dietzel W, Witte F, Hort N, Blawert C (2008) Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 10:B3–B14CrossRefGoogle Scholar
  158. 158.
    Gutwein LG, Webster TK (2002) Osteoblast and chrondrocyte proliferation in the presence of alumina and titania nanoparticles. J Nanopart Res 4:231–238CrossRefGoogle Scholar
  159. 159.
    Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20:1–25CrossRefGoogle Scholar
  160. 160.
    Dewi AH, Ana ID, Wolke J, Jansen J (2015) Behavior of POP-calcium carbonate hydrogel as bone substitute with controlled release capability: a study in rat. J Biomed Mater Res A. doi: 10.1002/jbm.a.35460 Google Scholar
  161. 161.
    Liu K, Li Y, Xu F, Zuo Y, Zhang L, Wang H, Liao J (2009) Graphite/poly(vinyl alcohol) hydrogel composite as porous ringy skirt for artificial cornea. Mater Sci Eng, C 29:261–266CrossRefGoogle Scholar
  162. 162.
    Lu N, Liu J, Li J, Zhang Z, Weng Y, Yuan B, Yang K, Ma Y (2014) Tunable dual-stimuli response of microgel composite consisting of reduced graphene oxide nanoparticles and poly(N-isopropylacrylamide) hydrogel microspheres. J Mater Chem B 2:3791–3798CrossRefGoogle Scholar
  163. 163.
    Gross KA, Rodríguez-Lorenzo LM (2004) Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Biomaterials 25:4955–4962CrossRefGoogle Scholar
  164. 164.
    Sambudi NS, Sathyamurthy M, Lee GM, Park SB (2015) Electrospun chitosan/poly(vinyl alcohol) reinforced with CaCO3 nanoparticles with enhanced mechanical properties and biocompatibility for cartilage tissue engineering. Compos Sci Technol 106:76–84CrossRefGoogle Scholar
  165. 165.
    Müller WEG, Tolba E, Schröder HC, Neufurth M, Wang S, Link T, Al-Nawas B, Wang X (2015) A new printable and durable N, O-carboxymethyl chitosan-Ca2+-polyphosphate complex with morphogenetic activity. J Mater Chem B 3:1722–1730CrossRefGoogle Scholar
  166. 166.
    Murphy WL, Dennis RG, Kileny JL, Mooney DJ (2002) Salt fusion: an approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Eng 8:43–52CrossRefGoogle Scholar
  167. 167.
    Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP (2003) Biphasic calcium phosphate biocermics: preparation, properties and applications. J Mater Sci Mater Med 14:201–209CrossRefGoogle Scholar
  168. 168.
    Boccaccini AR, Ma PX (2014) Tissue engineering using ceramics and polymers. Elsevier, BurlingtonGoogle Scholar
  169. 169.
    Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/bioglass composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429CrossRefGoogle Scholar
  170. 170.
    Gkioni K, Leeuwenburgh SCG, Douglas TEL, Mikos AG, Jansen JA (2010) Mineralization of hydrogels for bone regeneration. Tissue Eng Part B Rev 16:577–585CrossRefGoogle Scholar
  171. 171.
    Huang T, Xu H, Jiao K, Zhu L, Brown HR, Wang H (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19:1622–1626CrossRefGoogle Scholar
  172. 172.
    Zhao F, Qin X, Feng S (2015) Microstructure, mechanical and swelling properties of microgel composite hydrogels with high microgel content and a microgel cluster crosslinker. RSC Adv 5(56):45113–45121. doi: 10.1039/C5RA05969K CrossRefGoogle Scholar
  173. 173.
    Sun Y, Liu S, Du G, Gao G, Fu J (2015) Multi-responsive and tough hydrogels based on triblock copolymer micelles as multi-functional macro-crosslinkers. Chem Commun 51:8512–8515CrossRefGoogle Scholar
  174. 174.
    Zheng C, Huang Z (2015) Microgel reinforced composite hydrogels with pH-responsive, self-healing properties. Colloids Surf A 468:327–332CrossRefGoogle Scholar
  175. 175.
    Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology. Wiley, New YorkGoogle Scholar
  176. 176.
    Ylänen H (2011) Bioactive glasses: materials, properties and applications. Elsevier, OxfordCrossRefGoogle Scholar
  177. 177.
    Tilocca A, Cormack AN (2011) The initial stages of bioglass dissolution: a Car-Parrinello molecular-dynamics study of the glass-water interface. Proc R Soc A 467:2102–2111CrossRefGoogle Scholar
  178. 178.
    Wang H, Zhao S, Zhou J, Shen Y, Huang W, Zhang C, Rahaman MN, Wang D (2014) Evaulation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulating osteogenesis and angiogenesis in bone healing. J Mater Chem B 2:8547–8557CrossRefGoogle Scholar
  179. 179.
    Jones J, Clare A (2012) Bio-glasses: an introduction. Wiley, ChichesterCrossRefGoogle Scholar
  180. 180.
    Bernards MT, Qin C, Jiang S (2008) MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin and bovine serum albumin. Colloids Surf B 64:236–247CrossRefGoogle Scholar
  181. 181.
    del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ (2014) Protein corona formation around nanoparticles—from the past to the future. Mater Horiz 1:301–313CrossRefGoogle Scholar
  182. 182.
    Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138CrossRefGoogle Scholar
  183. 183.
    Vroman L (1988) The life of an artificial device in contact with blood: initial events and their effect on its final state. Bull NY Acad Med 64:352–357Google Scholar
  184. 184.
    Franz S, Rammelt S, Scharnweber D, Simon JC (2011) Immune response to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32:6692–6709CrossRefGoogle Scholar
  185. 185.
    Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4:546–547CrossRefGoogle Scholar
  186. 186.
    Killion JA, Kehoe S, Geever LM, Devine DM, Sheehan E, Boyd D, Higginbotham CL (2013) Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterization. Mater Sci Eng, C 33:4203–4212CrossRefGoogle Scholar
  187. 187.
    Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD (2010) Photocorsslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng Part A 16:2675–2685CrossRefGoogle Scholar
  188. 188.
    Pfister A, Landers R, Laib A, Hübner U, Schmelzeisen R, Mülhaupt R (2004) Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci A 42:624–638CrossRefGoogle Scholar
  189. 189.
    Nakamura M, Iwanaga S, Henmi C, Arai K, Nishiyama Y (2010) Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication 2:014110CrossRefGoogle Scholar
  190. 190.
    Hurtley S (2009) Location, location, location. Science 326:1205CrossRefGoogle Scholar
  191. 191.
    Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524CrossRefGoogle Scholar
  192. 192.
    Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B 14:61–86CrossRefGoogle Scholar
  193. 193.
    Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, Mooney DJ (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13:970–978CrossRefGoogle Scholar
  194. 194.
    Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC, Huebsch N, Mooney DJ (2015) Substrate stress relaxation regulates cell spreading. Nat Commun. doi: 10.1038/ncomms7365 Google Scholar
  195. 195.
    Velasco D, Tumarkin E, Kumacheva E (2012) Microfluidic encapsulation of cells in polymer microgels. Small 8:1633–1642CrossRefGoogle Scholar
  196. 196.
    Schmidt JJ, Rowley J, Kong HJ (2008) Hydrogels used for cell-based drug delivery. J Biomed Mater Res A 87:1113–1122CrossRefGoogle Scholar
  197. 197.
    Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37:1079–1104CrossRefGoogle Scholar
  198. 198.
    Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224CrossRefGoogle Scholar
  199. 199.
    Hutmacher DW, Loessner D, Rizzi S, Kaplan DL, Mooney DJ, Clements JA (2010) Can tissue engineering concepts advance tumor biology research? Trends Biotechnol 28:125–133CrossRefGoogle Scholar
  200. 200.
    Hutmacher DW (2010) Biomaterials offer cancer research the third dimension. Nat Mater 9:90–93CrossRefGoogle Scholar
  201. 201.
    Nyga A, Cheema U, Loizidou M (2011) 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 5:239–248CrossRefGoogle Scholar
  202. 202.
    Xu X, Farach-Carson MC, Jia X (2014) Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv 32:1256–1268CrossRefGoogle Scholar
  203. 203.
    Song HHG, Park KM, Gerecht S (2014) Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev 79–80:19–29CrossRefGoogle Scholar
  204. 204.
    Hutmacher DW, Horch RE, Loessner D, Rizzi S, Sieh S, Reichert JC, Clements JA, Beier JP, Arkudas A, Bleiziffer O, Kneser U (2009) Translating tissue engineering technology platforms into cancer research. J Cell Mol Med 13:1417–1427CrossRefGoogle Scholar
  205. 205.
    Horch RE, Boos AM, Quan Y, Bleiziffer O, Detsch R, Boccaccini AR, Alexiou C, Sun J, Beier JP, Arkudas A (2013) Cancer research by means of tissue engineering—is there a rationale? J Cell Mol Med 17:1197–1206CrossRefGoogle Scholar
  206. 206.
    Costa P (2015) Biofabricated constructs as tissue models: a short review. J Mater Sci Mater Med 26(4):156. doi: 10.1007/s10856-015-5502-7 CrossRefGoogle Scholar
  207. 207.
    Chang CW, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6:5157–5164CrossRefGoogle Scholar
  208. 208.
    Bongio M, van den Beucken JJJP, Nejadnik MR, Leeuwenburgh SCG, Kinard LA, Kasper FK, Mikos AG, Jansen JA (2011) Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vivo evaluation of cell behavior. Eur Cell Mater 22:359–376Google Scholar
  209. 209.
    Patel M, Patel KJ, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP (2010) Characterization of cyclic acetal hydroxyapatite nanocomposites for craniofacial tissue engineering. J Biomed Mater Res A 94:408–418Google Scholar
  210. 210.
    Zeng Q, Han Y, Li H, Chang J (2014) Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration. J Biomed Mater Res B Appl Biomater 102:42–51CrossRefGoogle Scholar
  211. 211.
    Sadat-Shojai M, Khorasani MT, Jamshidi A (2015) 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Mater Sci Eng C Mater Biol Appl 49:835–843CrossRefGoogle Scholar
  212. 212.
    Wheeler TS, Sbravati ND, Janorkar AV (2013) Mechanical & cell culture properties of elastin-like polypeptide, collagen, bioglass, and carbon nanosphere composites. Ann Biomed Eng 41:2042–2055CrossRefGoogle Scholar
  213. 213.
    Khanarian NT, Haney NM, Burga RA, Lu HH (2012) A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33:5247–5258CrossRefGoogle Scholar
  214. 214.
    Wu LN, Ishikawa Y, Sauer GR, Genge BR, Mwale F, Mishima H, Wuthier RE (1995) Morphological and biochemical characterization of mineralizing primary cultures of avian growth plate chondrocytes: evidence for cellular processing of Ca2+ and Pi prior to matrix mineralization. J Cell Biochem 57:218–237CrossRefGoogle Scholar
  215. 215.
    Mwale F, Tchetina E, Wu CW, Poole AR (2002) The assembly and remodeling of the extracellular matrix in growth plate in relationship to mineral deposition and cellular hypertrophy: an in situ study of collagens II and IX and proteoglycan. J Bone Miner Res 17:275–283CrossRefGoogle Scholar
  216. 216.
    Khanarian NT, Jiang J, Wan LQ, Mow VC, Lu HH (2012) A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng Part A 18:533–545CrossRefGoogle Scholar
  217. 217.
    Linsenmayer TF, Long F, Nurminskaya M, Chen Q, Schmid TM (1998) Type X collagen and other up-regulated components of the avian hypertrophic cartilage program. Prog Nucleic Acid Res Mol Biol 60:79–109CrossRefGoogle Scholar
  218. 218.
    Zizak I, Roschger P, Paris O, Misof BM, Berzlanovich A, Bernstorff S, Amenitsch H, Klaushofer K, Fratzl P (2003) Characteristics of mineral particles in the human bone/cartilage interface. J Struct Biol 141:208–217CrossRefGoogle Scholar
  219. 219.
    Chatzistavrou X, Rao RR, Caldwell DJ, Peterson AW, McAlpin B, Wang YY, Zheng L, Fenno JC, Stegemann JP, Papagerakis P (2015) Collagen/fibrin microbeads as a delivery system for Ag-doped bioactive glass and DPSCs for potential applications in dentistry. J Non-Cryst Solids. doi: 10.1016/j.jnoncrysol.2015.03.024 Google Scholar
  220. 220.
    Shin SR, Aghaei-Ghareh-Bolagh B, Dang TT, Topkaya SN, Gao X, Yang SY, Jung SM, Oh JH, Dokmeci MR, Tang X, Khademhosseini A (2013) Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv Mater 25:6385–6391CrossRefGoogle Scholar
  221. 221.
    Shin SR, Bae H, Cha JM, Mun JY, Chen YC, Tekin H, Shin H, Farshchi S, Dokmeci MR, Tang S, Khademhosseini A (2012) Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano 6:362–372CrossRefGoogle Scholar
  222. 222.
    Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkah M, Khabiry M, Azize M, Kong J, Wan KT, Palacios T, Dokmeci MR, Bae H, Tang X, Khademhosseini A (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369–2380CrossRefGoogle Scholar
  223. 223.
    Weaver JD, Stabler CL (2015) Antioxidant cerium oxide nanoparticle hydrogels for cellular encapsulation. Acta Biomater 16:136–144CrossRefGoogle Scholar
  224. 224.
    Ciriza J, del Burgo S, Virumbrales-Muñoz LM, Ochoa I, Fernandez LJ, Orive G, Hernandez MR, Pedraz JL (2015) Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate. Int J Pharm 493:260–270CrossRefGoogle Scholar
  225. 225.
    Derby B (2012) Printing and prototyping of tissues and scaffolds. Science 338:921–926CrossRefGoogle Scholar
  226. 226.
    Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, Alblas J, Dhert WJA (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18:33–44CrossRefGoogle Scholar
  227. 227.
    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130CrossRefGoogle Scholar
  228. 228.
    Luo Y, Wu C, Lode A, Gelinsky M (2013) Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Biofabrication 5:015005CrossRefGoogle Scholar
  229. 229.
    Sun JY, Zhao X, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRefGoogle Scholar
  230. 230.
    Wüst S, Godla ME, Müller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10:630–640CrossRefGoogle Scholar
  231. 231.
    Lewis JA (2008) Novel inks for direct-write assembly of 3-D periodic structures. Mater Matters 3:4–7Google Scholar
  232. 232.
    Wang X, Tolba E, Schröder HC, Neufurth M, Feng Q, Diehl-Seifert B, Müller WEG (2014) Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS One 9:e112497CrossRefGoogle Scholar
  233. 233.
    Lee HJ, Kim YB, Kim SH, Kim GH (2014) Mineralized biomimetic collagen/alginate/silica composite scaffolds fabricated by a low-temperature bio-plotting process for hard tissue regeneration: fabrication, characterisation and in vitro cellular activities. J Mater Chem B 2:5785–5798CrossRefGoogle Scholar
  234. 234.
    Hench LL, Jones J (2005) Biomaterials. Woodhead Publishing, Artificial Organs and Tissue EngineeringGoogle Scholar
  235. 235.
    Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH (2009) Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials 30:743–750CrossRefGoogle Scholar
  236. 236.
    Ozawa S, Kasugai S (1996) Evaluation of implant materials (hydroxyapatite, glass-ceramics, titanium) in rat bone marrow stromal cell culture. Biomaterials 17:23–29CrossRefGoogle Scholar
  237. 237.
    Luo Y, Lode A, Sonntag F, Nies B, Gelinsky M (2013) Well-ordered biphasic calcium phosphate-alginate scaffolds fabricated by multi-channel 3D plotting under mild conditions. J Mater Chem B 1:4088–4098CrossRefGoogle Scholar
  238. 238.
    Luo Y, Lode A, Akkineni AR, Gelinsky M (2015) Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv 5:43480–43488CrossRefGoogle Scholar
  239. 239.
    Gao G, Schilling AF, Yonezawa T, Wang J, Dai G, Cui X (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9:1304–1311CrossRefGoogle Scholar
  240. 240.
    Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15:805–817CrossRefGoogle Scholar
  241. 241.
    Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissue. J Biomed Mater Res B 85:573–582CrossRefGoogle Scholar
  242. 242.
    Kretlow JD, Klouda L, Mikos AG (2007) Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:263–273CrossRefGoogle Scholar
  243. 243.
    Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64:789–817CrossRefGoogle Scholar
  244. 244.
    Sun F, Zhang WB, Mahdavi A, Arnold FH, Tirrell DA (2014) Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc Natl Acad Sci USA 5:11269–11274CrossRefGoogle Scholar
  245. 245.
    Desai RM, Koshy ST, Hilderbrand SA, Mooney DJ, Joshi NS (2015) Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry. Biomaterials 50:30–37CrossRefGoogle Scholar
  246. 246.
    Elisseeff J (2004) Injectable cartilage tissue engineering. Expert Opin Biol Ther 4:1849–1859CrossRefGoogle Scholar
  247. 247.
    Haines-Butterick L, Rajagopal K, Branco M, Salick D, Rughani R, Pilarz M, Lamm MS, Pochan DJ, Schneider JP (2007) Controlling hydrogelation kinetics by peptide design for three-diemensional encapsulation and injectable delivery of cells. Proc Natl Acad Sci USA 104:7791–7796CrossRefGoogle Scholar
  248. 248.
    Hou Q, De Bank PA, Shakesheff KM (2004) Injectable scaffolds for tissue engineering. J Mater Chem 14:1915–1923CrossRefGoogle Scholar
  249. 249.
    Chen JP, Tsaia MJ, Liao HT (2013) Incorporation of biphasic calcium phosphate microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and differentiation. Colloids Surf B 110:120–129CrossRefGoogle Scholar
  250. 250.
    Gauthier O, Khairoun I, Bosco J, Obadia L, Bourges X, Rau C, Magne D, Bouler JM, Aguado E, Daculsi G, Weiss P (2003) Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. J Biomed Mater Res A 66:47–54CrossRefGoogle Scholar
  251. 251.
    Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650CrossRefGoogle Scholar
  252. 252.
    Song J, Xu J, Filion T, Saiz E, Tomsia AP, Lian JB, Stein GS, Ayers DC, Bertozzi CR (2009) Elastomeric high-mineral content hydrogel-hydroxyapatite composites for orthopedic applications. J Biomed Mater Res A 15:1098–1107CrossRefGoogle Scholar
  253. 253.
    Fu SZ, Guo G, Gong CY, Zeng S, Liang H, Luo F, Zhang XN, Zhao X, Wei YQ, Qian ZY (2009) Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B 113:16518–16525CrossRefGoogle Scholar
  254. 254.
    Fan RR, Deng XH, Zhou LX, Gao X, Fan M, Wang YL, Guo G (2014) Injectable thermosensitve hydrogel composite with surface-functionalized calcium phosphate as raw materials. Int J Nanomed 9:615–626Google Scholar
  255. 255.
    Ni PY, Fan M, Qian ZY, Luo JC, Gong CY, Fu SZ, Shi S, Luo F, Yang ZM (2012) Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel composite. J Biomed Mater Res A 100:171–179CrossRefGoogle Scholar
  256. 256.
    Fu SZ, Ni PY, Wang BY, Chu BY, Zheng L, Luo F, Luo JC, Qian ZY (2012) Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 33:4801–4809CrossRefGoogle Scholar
  257. 257.
    Sarvestani AS, Jabbari E (2006) Modeling and experimental investigation of rheological properties of injectable poly(lactide ethylene oxide fumarate)/hydroxyapatite nanocomposites. Biomacromolecules 7:1573–1580CrossRefGoogle Scholar
  258. 258.
    Lai MC, Chang KC, Hsu SC, Chou MC, Hung WI, Hsiao YR, Lee HM, Hsieh MF, Yeh JM (2014) In situ gelation of PEG-PLGA-PEG hydrogels containing high loading of hydroxyapatite: in vitro and in vivo characterization. Biomed Mater 9:015011CrossRefGoogle Scholar
  259. 259.
    Miller RA, Brady JM, Cutright ED (1977) Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in PLA/PGA copolymer ratios. J Biomed Mater Res 11:711–719CrossRefGoogle Scholar
  260. 260.
    Li SM, Garreau H, Vert M (1990) Structure-property relationship in the case of the degradation of massive poly(α-hydroxy acids) in aqueous media. J Mater Sci 3:131–139. doi: 10.1007/BF00700871 Google Scholar
  261. 261.
    Daculsi G, Weiss P, Bouler JM, Gauthier O, Millot F, Aguado E (1999) Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone 25:59S–61SCrossRefGoogle Scholar
  262. 262.
    Gauthier O, Bouler JM, Weiss P, Bosco J, Aguado E, Daculsi G (1999) Short-term effect of mineral particle size on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone 25:71S–74SCrossRefGoogle Scholar
  263. 263.
    Gauthier O, Boix D, Grimandi G, Aguado E, Bouler JM, Weiss P, Daculsi G (1999) A new injectable calcium phosphate biomaterial for immediate bone filling of extraction sockets: a preliminary study in dogs. J Peridontol 70:375–383CrossRefGoogle Scholar
  264. 264.
    Weiss P, Vinatier C, Guicheux J, Grimandi G, Daculsi G (2004) A self setting hydrogel as an extracellular synthetic matrix for tissue engineering. Key Eng Mater 254–256:1107–1110CrossRefGoogle Scholar
  265. 265.
    Trojani C, Boukhechba F, Scimeca JC, Vandenbos F, Michiels JF, Daculsi G, Boileau P, Weiss P, Carle GF, Rochet N (2006) Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 27:3256–3264CrossRefGoogle Scholar
  266. 266.
    Sohier J, Corre P, Weiss P, Layrolle P (2010) Hydrogel/calcium phosphate composites require specific properties for three-dimensional culture of human bone mesenchymal cells. Acta Biomater 6:2932–2939CrossRefGoogle Scholar
  267. 267.
    Weiss P, Vinatier C, Sohier J, Fatimi A, Layrolle P, Demais V, Atmani H, Basle MF, Guicheux J (2008) Self-hardening hydrogel for bone tissue engineering. Macromol Symp 1:30–35CrossRefGoogle Scholar
  268. 268.
    Laib S, Fellah BH, Fatimi A, Quillard S, Vinatier S, Gauthier O, Janvier P, Petit M, Bujoli B, Bohic S, Weiss P (2009) The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering. Biomaterials 8:1568–1577CrossRefGoogle Scholar
  269. 269.
    Liu W, Zhang J, Rethore G, Khairoun K, Pilet P, Tancret F, Bouler JM, Weiss P (2014) A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Acta Biomater 10:3335–3345CrossRefGoogle Scholar
  270. 270.
    Moreau JL, Xu HHK (2009) Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate–chitosan composite scaffold. Biomaterials 30:2675–2682CrossRefGoogle Scholar
  271. 271.
    Nguyen TP, Doan BHP, Dang DV, Nguyen CK, Tran NQ (2014) Enzyme-mediated in situ preparation of biocompatible hydrogel composites from chitosan derivative and biphasic calcium phosphate nanoparticles for bone regeneration. Adv Nat Sci: Nanosci Nanotechnol 5:015012Google Scholar
  272. 272.
    Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21:667–681CrossRefGoogle Scholar
  273. 273.
    Douglas TEL, Piwowarczyk W, Pamula E, Liskova J, Schaubroeck D, Leeuwenburgh SCG, Brackman G, Balcaen L, Detsch R, Declercq H, Cholewa-Kowalska K, Dokupil A, Cuijpers VMJI, Vanhaecke F, Cornelissen R, Coenye T, Boccaccini AR, Dubruel P (2014) Injectable self-gelling composites for bone tissue engineering based on gellan gum hydrogel enriched with different bioglasses. Biomed Mater 9:045014CrossRefGoogle Scholar
  274. 274.
    Gorriti MF, Lopez JMP, Boccaccini AR, Audisio C, Gorustovich AA (2009) In vitro study of the antibacterial activity of bioactive glass-ceramic scaffolds. Adv Eng Mater 11:B67–B70CrossRefGoogle Scholar
  275. 275.
    Hu S, Chang J, Liu MQ, Ning CQ (2009) Study on antibacterial effect of 45S5 bioglass. J Mater Sci Mater Med 20:281–286CrossRefGoogle Scholar
  276. 276.
    Hum J, Boccaccini AR (2012) J Mater Sci Mater Med 23:2317–2333CrossRefGoogle Scholar
  277. 277.
    Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855CrossRefGoogle Scholar
  278. 278.
    Fedorovich NE, Leeuwenburgh SC, van der Helm YJM, Alblas J, Dhert WJA (2012) The osteoinductive potential of printable, cell-laden hydrogel-ceramic composites. J Biomed Mater Res A 100:2412–2420Google Scholar
  279. 279.
    Campbell SB, Patenaude M, Hoare T (2013) Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)–superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14:644–653CrossRefGoogle Scholar
  280. 280.
    Na K, Kim SW, Sun BK, Woo DG, Yang HN, Chung HM, Park KH (2007) Osteogenic differentiation of rabbit mesenchymal stem cells in thermo-reversible hydrogel constructs containing hydroxyapatite and bone morphogenic protein-2 (BMP-2). Biomaterials 28:2631–2637CrossRefGoogle Scholar
  281. 281.
    Wren AW, Hassanzadeh P, Placek LM, Keenan TJ, Coughlan A, Boutelle LR, Towler MR (2015) Silver nanoparticle coated bioactive glasses – composites with dex/CMC hydrogels: characterization, solubility and in vitro biological studies. Macromol Biosci 15:1146–1158CrossRefGoogle Scholar
  282. 282.
    Yang X, Yang W, Wang Q, Li H, Wang K, Yang L, Liu W (2010) Atomic force microscopy investigation of the characteristic effects of silver ions on Escherichia coli and Staphylococcus epidermidis. Talanta 81:1508–1512CrossRefGoogle Scholar
  283. 283.
    Sahu A, Choi WI, Tae G (2012) A stimuli-sensitive injectable graphene oxide composite hydrogel. Chem Commun 48:5820–5822CrossRefGoogle Scholar
  284. 284.
    Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6:2364–2371CrossRefGoogle Scholar
  285. 285.
    Gil S, Mano JF (2014) Magnetic composite biomaterials for tissue engineering. Biomater Sci 2:812–818CrossRefGoogle Scholar
  286. 286.
    Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, Wang J, Jin T, Zhang H, Dai J, Krebsbach PH, Keller ET, Pienta KJ, Taichman RS (2013) Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun 4:1795CrossRefGoogle Scholar
  287. 287.
    Tajiri N, Kaneko Y, Shinozuka K, Ishikawa H, Yankee E, McGrogan M, Case C, Borlongan CV (2013) Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One 8:e74857CrossRefGoogle Scholar
  288. 288.
    Galano A (2008) Carbon nanotubes as free-radical scavengers. J Phys Chem C 112:8922–8927CrossRefGoogle Scholar
  289. 289.
    Kafi MA, El-Said WA, Kim TH, Choi JW (2011) Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays. Biomaterials 33:731–739CrossRefGoogle Scholar
  290. 290.
    Baik KY, Park SY, Heo K, Lee KB, Hong S (2011) Carbon nanotube monolayer cues for osteogenesis of mesenchymal stem cells. Small 7:741–745CrossRefGoogle Scholar
  291. 291.
    Namgung S, Kim T, Baik KY, Lee M, Nam JM, Hong S (2011) Fibronectin carbon nanotube hybrid nanostructures for controlled cell growth. Small 7:56–61CrossRefGoogle Scholar
  292. 292.
    Boanini E, Torricelli P, Fini M, Sima F, Serban N, Mihailescu IN, Bigi A (2012) Magnesium and strontium doped octacalcium phosphate thin films by matrix assisted pulsed laser evaporation. J Inorg Biochem 107:65–72CrossRefGoogle Scholar
  293. 293.
    Bracci B, Torricelli P, Panzavolta S, Boanini E, Giardino R, Bigi A (2009) Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J Inorg Biochem 103:1666–1674CrossRefGoogle Scholar
  294. 294.
    Sader MS, Legeros RZ, Soares GA (2009) Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. J Mater Sci Mater Med 20:521–527CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Institute of BiomaterialsUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations