Advertisement

Journal of Materials Science

, Volume 50, Issue 23, pp 7800–7807 | Cite as

Dense diamond nanoneedle arrays for enhanced intracellular delivery of drug molecules to cell lines

  • Xiaoyue Zhu
  • So Ying Kwok
  • Muk Fung Yuen
  • Li Yan
  • Wei Chen
  • Yang Yang
  • Zhigang Wang
  • K. N. Yu
  • Guangyu ZhuEmail author
  • Wenjun ZhangEmail author
  • Xianfeng ChenEmail author
Original Paper

Abstract

Nanotechnologies for intracellular delivery are of great value in clinical and biological research. Diamond nanoneedle arrays are a novel and attractive platform to facilitate drug delivery with minimal cytotoxicity. Using our technique, the cellular membranes can be temporarily disrupted for enhanced diffusion of drug molecules to cytoplasm. Herein we show that this technique is applicable to deliver different types of anticancer drugs into a variety of cell lines, although the membrane of each cell line possesses varied rigidity and hardness and each drug has its own unique properties and targets. When anticancer drugs and nanoneedle arrays are collaboratively used to treat cancer cells, the cell viability dramatically decreases by up to 40 % in comparison with the cells treated with drugs only. Attractively, therapeutic molecules can be efficiently delivered to drug-resistant cells with the aid of nanoneedle arrays. The combination of diamond nanoneedle arrays and anticancer drug cisplatin can decrease the viability of A549 cisplatin-resistant cells to about 60 %, while the cells only treated with the same concentration of drug are essentially not affected due to their drug resistance. These results indicate that dense nanoneedle arrays represent an effective approach to enhance the delivery of biological molecules to different types of cells. Such approach will certainly be beneficial to microbiological research and clinical applications in the future.

Keywords

A549 Cell Anticancer Drug Intracellular Delivery Full Culture Medium Nanostructure Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gref R, Domb A, Quellec P, BlunGref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM, Langer R (2012) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 64:316–326CrossRefGoogle Scholar
  2. 2.
    Kommareddy S, Baudner BC, Oh S, Kwon SY, Singh M, O’Hagan DT (2012) Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci 101:1021–1027CrossRefGoogle Scholar
  3. 3.
    Pramod PS, Shah R, Chaphekar S, Balasubramanian N, Jayakannan M (2014) Polysaccharide nano-vesicular multidrug carriers for synergistic killing of cancer cells. Nanoscale 6:11841–11855CrossRefGoogle Scholar
  4. 4.
    Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P (2007) Interfacing silicon nanowires with mammalian cells. J Am Chem Soc 129:7228–7229CrossRefGoogle Scholar
  5. 5.
    Shalek AK, Robinson JT, Karp ES, Lee JS, Ahn DR, Yoon MH, Sutton A, Jorgolli M, Gertner RS, Gujral TS, MacBeath G, Yang EG, Park H (2010) Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc Natl Acad Sci 107:1870–1875CrossRefGoogle Scholar
  6. 6.
    VanDersarl JJ, Xu AM, Melosh NA (2012) Nanostraws for direct fluidic intracellular access. Nano Lett 12:3881–3886CrossRefGoogle Scholar
  7. 7.
    Chan MS, Lo PK (2014) Nanoneedle-assisted delivery of site-selective peptide-functionalized DNA nanocages for targeting mitochondria and nuclei. Small 10:1255–1260CrossRefGoogle Scholar
  8. 8.
    Peng JL, Garcia MA, Choi JS, Zhao LB, Chen KJ, Bernstein JR, Peyda P, Hsiao YS, Liu KW, Lin WY, Pyle AD, Wang H, Hou S, Tseng HR (2014) Molecular recognition enables nanosubstrate-mediated delivery of gene-encapsulated nanoparticles with high efficiency. ACS Nano 8:4621–4629CrossRefGoogle Scholar
  9. 9.
    Xu AM, Aalipour A, Leal-Ortiz S, Mekhdjian AH, Xie X, Dunn AR, Garner CC, Melosh NA (2014) Quantification of nanowire penetration into living cells. Nat Commun 5:3613Google Scholar
  10. 10.
    Chong EYW, Ng CYP, Choi VWY, Yan L, Yang Y, Zhang WJ, Yeung KWK, Chen X, Yu KN (2013) A diamond nanocone array for improved osteoblastic differentiation. J Mater Chem B 1:3390–3396CrossRefGoogle Scholar
  11. 11.
    Chen X, Zhu G, Yang Y, Wang BL, Yan L, Zhang KY, Lo KKW, Zhang WJ (2013) A diamond nanoneedle array for potential high-throughput intracellular delivery. Adv Healthc Mater 2:1103–1107CrossRefGoogle Scholar
  12. 12.
    Yan L, Zhang J, Lee CS, Chen X (2014) Micro- and nanotechnologies for intracellular delivery. Small 10:4487–4504CrossRefGoogle Scholar
  13. 13.
    Yan L, Yang Y, Zhang W, Chen X (2014) Advanced materials and nanotechnology for drug delivery. Adv Mater 26:5533–5540CrossRefGoogle Scholar
  14. 14.
    Wang Y, Yang Y, Yan L, Kwok SY, Li W, Wang Z, Zhu X, Zhu G, Zhang W, Chen X, Shi P (2014) Poking cells for efficient vector-free intracellular delivery. Nat Commun 5:4466Google Scholar
  15. 15.
    Yang Y, Yuen MF, Chen X, Xu SS, Tang Y, Zhang W (2015) Fabrication of arrays of high-aspect-ratio diamond nanoneedles via maskless ECR-assisted microwave plasma etching. CrystEngComm 17:2791–2800CrossRefGoogle Scholar
  16. 16.
    He B, Yang Y, Yuen MF, Chen X, Lee CS, Zhang WJ (2013) Vertical nanostructure arrays by plasma etching for applications in biology, energy, and electronics. Nano Today 8:265–289CrossRefGoogle Scholar
  17. 17.
    Zhang W, Wu Y, Chan CY, Wong WK, Meng XM, Bello I, Lifshitz Y, Lee ST (2004) Structuring single- and nano-crystalline diamond cones. Diam Relat Mater 13:1037–1043CrossRefGoogle Scholar
  18. 18.
    Palissot V, Belhoussine R, Carpentier Y, Sebille S, Morjani H, Manfait M, Dufer J (1998) Resistance to apoptosis induced by topoisomerase I inhibitors in multidrug-resistant HL60 leukemic cells. Biochem Biophys Res Commun 245:918–922CrossRefGoogle Scholar
  19. 19.
    Kelland L (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7:573–584CrossRefGoogle Scholar
  20. 20.
    Galanski M, Jakupec MA, Keppler BK (2005) Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem 12:2075–2094CrossRefGoogle Scholar
  21. 21.
    Chin CF, Tian Q, Setyawati MI, Fang W, Tan ES, Leong DT, Ang WH (2012) Tuning the activity of platinum(IV) anticancer complexes through asymmetric acylation. J Med Chem 55:7571–7582CrossRefGoogle Scholar
  22. 22.
    Leporatti S, Vergara D, Zacheo A, Vergaro V, Maruccio G, Cingolani R, Rinaldi R (2009) Cytomechanical and topological investigation of MCF-7 cells by scanning force microscopy. Nanotechnology 20:055103CrossRefGoogle Scholar
  23. 23.
    Yokokawa M, Takeyasu K, Yoshimura SH (2008) Mechanical properties of plasma membrane and nuclear envelope measured by scanning probe microscope. J Microsc 232:82–90CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiaoyue Zhu
    • 2
    • 3
  • So Ying Kwok
    • 2
    • 3
  • Muk Fung Yuen
    • 2
    • 3
  • Li Yan
    • 2
    • 3
  • Wei Chen
    • 2
    • 3
  • Yang Yang
    • 2
    • 3
  • Zhigang Wang
    • 4
  • K. N. Yu
    • 2
  • Guangyu Zhu
    • 4
    Email author
  • Wenjun Zhang
    • 2
    • 3
    Email author
  • Xianfeng Chen
    • 1
    Email author
  1. 1.School of Chemistry and Forensic Sciences, Faculty of Life SciencesUniversity of BradfordBradfordUK
  2. 2.Department of Physics and Materials ScienceCity University of Hong KongKowloonHong Kong, SAR
  3. 3.Center of Super-Diamond and Advanced Films (COSDAF)City University of Hong KongKowloonHong Kong, SAR
  4. 4.Department of Biology and ChemistryCity University of Hong KongKowloonHong Kong, SAR

Personalised recommendations