Journal of Materials Science

, Volume 51, Issue 1, pp 513–553 | Cite as

Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine

  • Yuping Bao
  • Tianlong Wen
  • Anna Cristina S. Samia
  • Amit Khandhar
  • Kannan M. Krishnan
50th Anniversary

Abstract

We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several nontraditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body—an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.

References

  1. 1.
    Casbeer E, Sharma VK, Li XZ (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14CrossRefGoogle Scholar
  2. 2.
    Mangrulkar PA, Polshettiwar V, Labhsetwar NK, Varma RS, Rayalu SS (2012) Nano-ferrites for water splitting: unprecedented high photocatalytic hydrogen production under visible light. Nanoscale 4:5202–5209CrossRefGoogle Scholar
  3. 3.
    Han SB, Kang TB, Joo OS, Jung KD (2007) Water splitting for hydrogen production with ferrites. Sol Energy 81:623–628CrossRefGoogle Scholar
  4. 4.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181CrossRefGoogle Scholar
  5. 5.
    Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRefGoogle Scholar
  6. 6.
    Plank C, Vlaskou D, Schillinger U, Mykhaylyk O (2011) MagnetofectionTM platform: from magnetic nanoparticles to novel nucleic acid therapeutics. Ther Deliv 2:717–726CrossRefGoogle Scholar
  7. 7.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580CrossRefGoogle Scholar
  8. 8.
    Jain RK (1998) The next frontier of molecular medicine: delivery of therapeutics. Nat Med 4:655–657CrossRefGoogle Scholar
  9. 9.
    Ito A, Shinkai M, Honda H, Kobayashi T (2005) Review: medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11CrossRefGoogle Scholar
  10. 10.
    Liang QL, Macher T, Xu YL, Bao YP, Cassady CJ (2014) MALDI MS in-source decay of glycans using a glutathione-capped iron oxide nanoparticle matrix. Anal Chem 86:8496–8503CrossRefGoogle Scholar
  11. 11.
    Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C (2007) Cobalt ferrite nanoparticles: the control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater 311:10–16CrossRefGoogle Scholar
  12. 12.
    Vestal CR, Zhang ZJ (2003) Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. J Am Chem Soc 125:9828–9833CrossRefGoogle Scholar
  13. 13.
    Song O, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168CrossRefGoogle Scholar
  14. 14.
    Palchoudhury S, Xu Y, Goodwin J, Bao Y (2011) Synthesis of iron oxide nanoworms. J Appl Phys 109:07E314CrossRefGoogle Scholar
  15. 15.
    Palchoudhury S, Xu YL, Rushdi A, Holler RA, Bao YP (2012) Controlled synthesis of iron oxide nanoplates and nanoflowers. Chem Commun 48:10499–10501CrossRefGoogle Scholar
  16. 16.
    Palchoudhury S, An W, Xu YL, Qin Y, Zhang ZT, Chopra N et al (2011) Synthesis and growth mechanism of iron oxide nanowhiskers. Nano Lett 11:1141–1146CrossRefGoogle Scholar
  17. 17.
    Peddis D, Cannas C, Musinu A, Piccaluga G (2009) Magnetism in nanoparticles: beyond the effect of particle size. Chem-A Eur J 15:7822–7829CrossRefGoogle Scholar
  18. 18.
    Peddis D, Cannas C, Musinu A, Ardu A, Orru F, Fiorani D et al (2013) Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem Mater 25:2005–2013CrossRefGoogle Scholar
  19. 19.
    Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nano 6:418–422CrossRefGoogle Scholar
  20. 20.
    Mohapatra J, Mitra A, Bahadur D, Aslam M (2013) Surface controlled synthesis of MFe2O4 (M = Mn, Fe Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm 15:524–532CrossRefGoogle Scholar
  21. 21.
    Li QL, Wang YF, Chang CB (2010) Study of Cu Co, Mn and La doped NiZn ferrite nanorods synthesized by the coprecipitation method. J Alloy Compd 505:523–526CrossRefGoogle Scholar
  22. 22.
    Xu Y, Sherwood J, Qin Y, Holler RA, Bao Y (2015) A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes. Nanoscale 7:12641–12649CrossRefGoogle Scholar
  23. 23.
    Scherer C, Neto AMF (2005) Ferrofluids: properties and applications. Braz J Phys 35:718–727CrossRefGoogle Scholar
  24. 24.
    Xie J, Huang J, Li X, Sun S, Chen X (2009) Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem 16:1278–1294CrossRefGoogle Scholar
  25. 25.
    Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol 8:3247–3271CrossRefGoogle Scholar
  26. 26.
    Gazeau F, Levy M, Wilhelm C (2008) Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 3:831–844CrossRefGoogle Scholar
  27. 27.
    Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276Google Scholar
  28. 28.
    Park M, Lee N, Choi SH, An K, Yu SH, Kim JH et al (2011) Large-scale synthesis of ultrathin manganese oxide nanoplates and their applications to T1 MRI contrast agents. Chem Mater 23:3318–3324CrossRefGoogle Scholar
  29. 29.
    Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS et al (2015) Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging. Adv Funct Mater 25:490–494CrossRefGoogle Scholar
  30. 30.
    Park JH, von Maltzahn G, Zhang LL, Schwartz MP, Ruoslahti E, Bhatia SN et al (2008) Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 20:1630–1635CrossRefGoogle Scholar
  31. 31.
    Lee N, Choi Y, Lee Y, Park M, Moon WK, Choi SH et al (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12:3127–3131CrossRefGoogle Scholar
  32. 32.
    Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M et al (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091CrossRefGoogle Scholar
  33. 33.
    Ferguson RM, Khandhar AP, Kemp SJ, Arami H, Saritas EU, Croft LR et al (2015) Magnetic particle imaging with tailored iron oxide nanoparticle tracers. IEEE Trans Med Imaging 34:1077–1084CrossRefGoogle Scholar
  34. 34.
    Majetich SA, Sachan M (2006) Magnetostatic interactions in magnetic nanoparticle assemblies: energy, time and length scales. J Phys D 39:R407–R422CrossRefGoogle Scholar
  35. 35.
    Majetich SA, Wen T, Mefford OT (2013) Magnetic nanoparticles. MRS Bull 38:899–903CrossRefGoogle Scholar
  36. 36.
    Talapin DV, Murray CB (2005) PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310:86–89CrossRefGoogle Scholar
  37. 37.
    Kim TH, Cho KS, Lee EK, Lee SJ, Chae J, Kim JW et al (2011) Full-colour quantum dot displays fabricated by transfer printing. Nat Photonics 5:176–182CrossRefGoogle Scholar
  38. 38.
    Han ST, Zhou Y, Xu ZX, Huang LB, Yang XB, Roy VAL (2012) Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories. Adv Mater 24:3556–3561CrossRefGoogle Scholar
  39. 39.
    Nie ZH, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5:15–25CrossRefGoogle Scholar
  40. 40.
    Zhang W, Wen TL, Krishnan KM (2012) Positive exchange bias and upward magnetic relaxation in a Fe-film/CoO-nanoparticle hybrid system. Appl Phys Lett 101:132401 (6 pp) CrossRefGoogle Scholar
  41. 41.
    Majetich SA, Wen T, Booth RA (2011) Functional magnetic nanoparticle assemblies: formation, collective behavior, and future directions. ACS Nano 5:6081–6084CrossRefGoogle Scholar
  42. 42.
    Bao YP, Beerman M, Krishnan KM (2004) Controlled self-assembly of colloidal cobalt nanocrystals mediated by magnetic interactions. J Magn Magn Mater 272:E1367–E1368CrossRefGoogle Scholar
  43. 43.
    Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605CrossRefGoogle Scholar
  44. 44.
    Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA, Jaeger HM (2006) Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater 5:265–270CrossRefGoogle Scholar
  45. 45.
    Huang JX, Kim F, Tao AR, Connor S, Yang PD (2005) Spontaneous formation of nanoparticle stripe patterns through dewetting. Nat Mater 4:896–900CrossRefGoogle Scholar
  46. 46.
    Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421CrossRefGoogle Scholar
  47. 47.
    Talapin DV, Shevchenko EV, Murray CB, Titov AV, Kral P (2007) Dipole-dipole interactions in nanoparticle superlattices. Nano Lett 7:1213–1219CrossRefGoogle Scholar
  48. 48.
    Liddle JA, Cui Y, Alivisatos P (2004) Lithographically directed self-assembly of nanostructures. J Vac Sci Technol B 22:3409–3414CrossRefGoogle Scholar
  49. 49.
    Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J Phys Chem B 105:3353–3357CrossRefGoogle Scholar
  50. 50.
    Yin YD, Lu Y, Gates B, Xia YN (2001) Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc 123:8718–8729CrossRefGoogle Scholar
  51. 51.
    Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5:1600–1630CrossRefGoogle Scholar
  52. 52.
    Cheng GJ, Romero D, Fraser GT, Walker ARH (2005) Magnetic-field-induced assemblies of cobalt nanoparticles. Langmuir 21:12055–12059CrossRefGoogle Scholar
  53. 53.
    Shevchenko EV, Talapin DV, Kotov NA, O’Brien S, Murray CB (2006) Structural diversity in binary nanoparticle superlattices. Nature 439:55–59CrossRefGoogle Scholar
  54. 54.
    Gao YH, Bao YP, Beerman M, Yasuhara A, Shindo D, Krishnan KM (2004) Superstructures of self-assembled cobalt nanocrystals. Appl Phys Lett 84:3361–3363CrossRefGoogle Scholar
  55. 55.
    Wen TL, Majetich SA (2011) Ultra-large-area self-assembled mono layers of nanoparticles. ACS Nano 5:8868–8876CrossRefGoogle Scholar
  56. 56.
    Wen T, Zhang D, Wen Q, Zhang H, Liao Y, Li Q et al (2015) Magnetic nanoparticle assembly arrays prepared by hierarchical self-assembly on a patterned surface. Nanoscale 7:4906–4911CrossRefGoogle Scholar
  57. 57.
    Wen TL, Brush LN, Krishnan KM (2014) A generalized diffusion model for growth of nanoparticles synthesized by colloidal methods. J Colloid Interface Sci 419:79–85CrossRefGoogle Scholar
  58. 58.
    Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117CrossRefGoogle Scholar
  59. 59.
    Bao YP, An W, Turner CH, Krishnan KM (2010) The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26:478–483CrossRefGoogle Scholar
  60. 60.
    Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41:2656–2672CrossRefGoogle Scholar
  61. 61.
    Jin YD, Jia CX, Huang SW, O’Donnell M, Gao XH (2010) Multifunctional nanoparticles as coupled contrast agents. Nat Commun 1:1–8CrossRefGoogle Scholar
  62. 62.
    Bao YP, Calderon H, Krishnan KM (2007) Synthesis and characterization of magnetic-optical Co-Au core-shell nanoparticles. J Phys Chem C 111:1941–1944CrossRefGoogle Scholar
  63. 63.
    Corr SA, Rakovich YP, Gun’ko YK (2008) Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res Lett 3:87–104CrossRefGoogle Scholar
  64. 64.
    Xu YL, Palchoudhury S, Qin Y, Macher T, Bao YP (2012) Make conjugation simple: a facile approach to integrated nanostructures. Langmuir 28:8767–8772CrossRefGoogle Scholar
  65. 65.
    Arami H, Khandhar AP, Tomitaka A, Yu E, Goodwill PW, Conolly SM et al (2015) In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents. Biomaterials 52:251–261CrossRefGoogle Scholar
  66. 66.
    Arami H, Krishnan KM (2014) Intracellular performance of tailored nanoparticle tracers in magnetic particle imaging. J Appl Phys 115:17B306 (3 pp) CrossRefGoogle Scholar
  67. 67.
    Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321:1947–1950CrossRefGoogle Scholar
  68. 68.
    Gonzales M, Krishnan KM (2005) Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia. J Magn Magn Mater 293:265–270CrossRefGoogle Scholar
  69. 69.
    Clift MJD, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L et al (2008) The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol 232:418–427CrossRefGoogle Scholar
  70. 70.
    Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13:245–255CrossRefGoogle Scholar
  71. 71.
    Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318Google Scholar
  72. 72.
    Lunov O, Syrovets T, Rocker C, Tron K, Nienhaus GU, Rasche V et al (2010) Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 31:9015–9022CrossRefGoogle Scholar
  73. 73.
    Ferguson RM, Khandhar AP, Arami H, Hua L, Hovorka O, Krishnan KM (2013) Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers. Biomed Eng 58:493–507CrossRefGoogle Scholar
  74. 74.
    Kittel C (1949) Physical theory of ferromagnetic domains. Rev Modern Phys 21:541–589CrossRefGoogle Scholar
  75. 75.
    Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M et al (2006) Nanomagnetism and spin electronics: materials, microstructure and novel properties. J Mater Sci 41:793–815. doi:10.1007/s10853-006-6564-1 CrossRefGoogle Scholar
  76. 76.
    Frei SSEH, Treves D (1957) Critical size and nucleation field of ideal ferromagnetic particles. Phys Rev 106:446–455CrossRefGoogle Scholar
  77. 77.
    Puntes VF, Krishnan K, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19:145–148CrossRefGoogle Scholar
  78. 78.
    Bao YP, Beerman M, Pakhomov AB, Krishnan KM (2005) Controlled crystalline structure and surface stability of cobalt nanocrystals. J Phys Chem B 109:7220–7222CrossRefGoogle Scholar
  79. 79.
    Bao Y, An W, Turner CH, Krishnan K (2009) The critical role of surfactants in the growth of cobalt nanoparticles. Langmuir 26:478–483CrossRefGoogle Scholar
  80. 80.
    Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20CrossRefGoogle Scholar
  81. 81.
    Guo DD, Wu CH, Li XM, Jiang H, Wang XM, Chen BA (2008) In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells. J Nanosci Nanotechnol 8:2301–2307CrossRefGoogle Scholar
  82. 82.
    Bao Y, Pakhomov AB, Krishnan KM (2005) A general approach to synthesis of nanoparticles with controlled morphologies and magnetic properties. J Appl Phys 97:10J317 (3 pp) CrossRefGoogle Scholar
  83. 83.
    Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992CrossRefGoogle Scholar
  84. 84.
    Joseyphus RJ, Shinoda K, Sato Y, Tohji K, Jeyadevan B (2008) Composition controlled synthesis of fcc-FePt nanoparticles using a modified polyol process. J Mater Sci 43:2402–2406. doi:10.1007/s10853-007-1951-9 CrossRefGoogle Scholar
  85. 85.
    Wang HL, Zhang Y, Huang Y, Zeng Q, Hadjipanayis GC (2004) CoPt nanoparticles by chemical reduction. J Magn Magn Mater 272:E1279–E1280CrossRefGoogle Scholar
  86. 86.
    Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRefGoogle Scholar
  87. 87.
    Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801CrossRefGoogle Scholar
  88. 88.
    Rockenberger J, Scher EC, Alivisatos AP (1999) A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc 121:11595–11596CrossRefGoogle Scholar
  89. 89.
    Xie J, Peng S, Brower N, Pourmand N, Wang SX, Sun SH (2006) One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl Chem 78:1003–1014CrossRefGoogle Scholar
  90. 90.
    Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895CrossRefGoogle Scholar
  91. 91.
    Yu WW, Falkner JC, Yavuz CT, Colvin VL (2004) Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun 2306–2307Google Scholar
  92. 92.
    Xu YL, Qin Y, Palchoudhury S, Bao YP (2011) Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir 27:8990–8997CrossRefGoogle Scholar
  93. 93.
    Xu YL, Baiu DC, Sherwood JA, McElreath MR, Qin Y, Lackey KH et al (2014) Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles. J Mater Chem B 2:6198–6206CrossRefGoogle Scholar
  94. 94.
    Kim BH, Lee N, Kim H, An K, Park YI, Choi Y et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T-1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631CrossRefGoogle Scholar
  95. 95.
    Palchoudhury S, Xu YL, An W, Turner CH, Bao YP (2010) Platinum attachments on iron oxide nanoparticle surfaces. J Appl Phys 107:09B311 (3 pp) CrossRefGoogle Scholar
  96. 96.
    Young AG, Al-Salim N, Green DP, McQuillan AJ (2008) Attenuated total reflection infrared studies of oleate and trioctylphosphine oxide ligand adsorption and exchange reactions on CdS quantum dot films. Langmuir 24:3841–3849CrossRefGoogle Scholar
  97. 97.
    Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM (2015) Nanoscale 7:11142–11154CrossRefGoogle Scholar
  98. 98.
    Hai HT, Yang HT, Kura H, Hasegawa D, Ogata Y, Takahashi M et al (2010) Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. J Colloid Interface Sci 346:37–42CrossRefGoogle Scholar
  99. 99.
    Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Schaffler F, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129:6352–6353CrossRefGoogle Scholar
  100. 100.
    Xu ZC, Shen CM, Tian YA, Shi XZ, Gao HJ (2010) Organic phase synthesis of monodisperse iron oxide nanocrystals using iron chloride as precursor. Nanoscale 2:1027–1032CrossRefGoogle Scholar
  101. 101.
    Kim D, Park J, An K, Yang NK, Park JG, Hyeon T (2007) Synthesis of hollow iron nanoframes. J Am Chem Soc 129:5812–5813CrossRefGoogle Scholar
  102. 102.
    Shavel A, Rodriguez-Gonzalez B, Spasova M, Farle M, Liz-Marzan LM (2007) Synthesis and characterization of iron/iron oxide core/shell nanocubes. Adv Funct Mater 17:3870–3876CrossRefGoogle Scholar
  103. 103.
    Kwon SG, Piao Y, Park J, Angappane S, Jo Y, Hwang NM et al (2007) Kinetics of monodisperse iron oxide nanocrystal formation by “heating-up” process. J Am Chem Soc 129:12571–12584CrossRefGoogle Scholar
  104. 104.
    Plate NA, Mamlykh AV, Uzhinova LD, Panov VP, Rozenfel’d MA (1989) Structure of the heparin macromonomer and features of its radical polymerization. Polym Sci USSR 31:220–226CrossRefGoogle Scholar
  105. 105.
    Kwon KW, Lee BH, Shim M (2006) Structural evolution in metal oxide/semiconductor colloidal nanocrystal heterostructures. Chem Mater 18:6357–6363CrossRefGoogle Scholar
  106. 106.
    Park JN, Zhang P, Hu YS, McFarland E (2010) Synthesis and characterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion. Nanotechnology 21:225708 (8 pp) CrossRefGoogle Scholar
  107. 107.
    Jia CJ, Sun LD, Luo F, Han XD, Heyderman LJ, Yan ZG et al (2008) Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J Am Chem Soc 130:16968–16977CrossRefGoogle Scholar
  108. 108.
    Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305CrossRefGoogle Scholar
  109. 109.
    Kachkachi H, Ezzir A, Nogues M, Tronc E (2000) Surface effects in nanoparticles: application to maghemite gamma-Fe2O3. Eur Phys J B 14:681–689CrossRefGoogle Scholar
  110. 110.
    Koseoglu Y, Kavas H, Aktas B (2006) Surface effects on magnetic properties of superparamagnetic magnetite nanoparticles. Phys Status Solidi 203:1595–1601CrossRefGoogle Scholar
  111. 111.
    Millan A, Urtizberea A, Silva NJO, Palacio F, Amaral VS, Snoeck E et al (2007) Surface effects in maghemite nanoparticles. J Magn Magn Mater 312:L5–L9CrossRefGoogle Scholar
  112. 112.
    Koseoglu Y, Kavas H (2008) Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J Nanosci Nanotechnol 8:584–590CrossRefGoogle Scholar
  113. 113.
    Iglesias O, Labarta A (2001) Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations. Phys Rev B 63:184416 (19 pp) CrossRefGoogle Scholar
  114. 114.
    Ding T, Song K, Clays K, Tung CH (2009) Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field. Adv Mater 21:1936–1940CrossRefGoogle Scholar
  115. 115.
    Yamaki M, Higo J, Nagayama K (1995) Size-dependent separation of colloidal particles in 2-dimensional convective self-assembly. Langmuir 11:2975–2978CrossRefGoogle Scholar
  116. 116.
    Kim MH, Im SH, Park OO (2005) Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly. Adv Funct Mater 15:1329–1335CrossRefGoogle Scholar
  117. 117.
    Wen TL, Liang WK, Krishnan KM (2010) Coupling of blocking and melting in cobalt ferrofluids. J Appl Phys 107:09B501 (3 pp) Google Scholar
  118. 118.
    Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Mechanism of formation of 2 dimensional crystals from latex-particles on substrate. Langmuir 8:3183–3190CrossRefGoogle Scholar
  119. 119.
    Henzie J, Andrews SC, Ling XY, Li ZY, Yang PD (2013) Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc Natl Acad Sci USA 110:6640–6645CrossRefGoogle Scholar
  120. 120.
    Zhang JH, Li YF, Zhang XM, Yang B (2010) Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Adv Mater 22:4249–4269CrossRefGoogle Scholar
  121. 121.
    Lalatonne Y, Richardi J, Pileni MP (2004) Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater 3:121–125CrossRefGoogle Scholar
  122. 122.
    Glotzer SC (2012) Nanotechnology shape matters. Nature 481:450–452CrossRefGoogle Scholar
  123. 123.
    Jones MR, Macfarlane RJ, Prigodich AE, Patel PC, Mirkin CA (2011) Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J Am Chem Soc 133:18865–18869CrossRefGoogle Scholar
  124. 124.
    Wu LH, Jubert PO, Berman D, Imaino W, Nelson A, Zhu HY et al (2014) Monolayer assembly of ferrimagnetic CoxFe3−xO4 nanocubes for magnetic recording. Nano Lett 14:3395–3399CrossRefGoogle Scholar
  125. 125.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829CrossRefGoogle Scholar
  126. 126.
    Yunker PJ, Still T, Lohr MA, Yodh AG (2011) Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476:308–311CrossRefGoogle Scholar
  127. 127.
    Damasceno PF, Engel M, Glotzer SC (2012) Predictive self-assembly of polyhedra into complex structures. Science 337:453–457CrossRefGoogle Scholar
  128. 128.
    Mueggenburg KE, Lin XM, Goldsmith RH, Jaeger HM (2007) Elastic membranes of close-packed nanoparticle arrays. Nat Mater 6:656–660CrossRefGoogle Scholar
  129. 129.
    He JB, Kanjanaboos P, Frazer NL, Weis A, Lin XM, Jaeger HM (2010) Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 6:1449–1456CrossRefGoogle Scholar
  130. 130.
    Kanjanaboos P, Joshi-Imre A, Lin XM, Jaeger HM (2011) Strain patterning and direct measurement of Poisson’s ratio in nanoparticle mono layer sheets. Nano Lett 11:2567–2571CrossRefGoogle Scholar
  131. 131.
    Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci 30:545–610CrossRefGoogle Scholar
  132. 132.
    Singh A, Dickinson C, Ryan KM (2012) Insight into the 3D architecture and quasicrystal symmetry of multilayer nanorod assemblies from moire interference patterns. ACS Nano 6:3339–3345CrossRefGoogle Scholar
  133. 133.
    Puntes VF, Gorostiza P, Aruguete DM, Bastus NG, Alivisatos AP (2004) Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nat Mater 3:263–268CrossRefGoogle Scholar
  134. 134.
    Yamamoto K, Hogg CR, Yamamuro S, Hirayama T, Majetich SA (2011) Dipolar ferromagnetic phase transition in Fe3O4 nanoparticle arrays observed by Lorentz microscopy and electron holography. Appl Phys Lett 98:072509 (3 pp) CrossRefGoogle Scholar
  135. 135.
    Wen TL, Booth RA, Majetich SA (2012) Ten-nanometer dense hole arrays generated by nanoparticle lithography. Nano Lett 12:5873–5878CrossRefGoogle Scholar
  136. 136.
    Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS (2009) Cluster-assembled materials. ACS Nano 3:244–255CrossRefGoogle Scholar
  137. 137.
    Lopes WA, Jaeger HM (2001) Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414:735–738CrossRefGoogle Scholar
  138. 138.
    Alba M, Pazos-Perez N, Vaz B, Formentin P, Tebbe M, Correa-Duarte MA et al (2013) Macroscale plasmonic substrates for highly sensitive surface-enhanced raman scattering. Angew Chem Int Ed 52:6459–6463CrossRefGoogle Scholar
  139. 139.
    Wen TL, Krishnan KM (2011) Cobalt-based magnetic nanocomposites: fabrication, fundamentals and applications. J Phys D 44:393001 (24 pp) CrossRefGoogle Scholar
  140. 140.
    Wen TL, Krishnan KM (2011) Magnetic properties of Au-core-Co-shell nanoparticles. J Appl Phys 109:07B515 (3 pp) Google Scholar
  141. 141.
    Wen TL, Krishnan KM (2010) Thermal stability and morphological transformations of Au-core-Co-shell nanocrucibles. J Phys Chem C 114:14838–14842CrossRefGoogle Scholar
  142. 142.
    Wen TL, Liu D, Luscombe CK, Krishnan KM (2009) Granular magnetoresistance in cobalt/poly (3-hexylthiophene, 2, 5-diyl) hybrid thin films prepared by a wet chemical method. Appl Phys Lett 95:082509 (3 pp) CrossRefGoogle Scholar
  143. 143.
    Situ SF, Samia ACS (2014) Highly efficient antibacterial iron oxide@carbon nanochains from wustite precursor nanoparticles. ACS Appl Mater Interface 6:20154–20163CrossRefGoogle Scholar
  144. 144.
    Lu F, Popa A, Zhou SW, Zhu JJ, Samia ACS (2013) Iron oxide-loaded hollow mesoporous silica nanocapsules for controlled drug release and hyperthermia. Chem Commun 49:11436–11438CrossRefGoogle Scholar
  145. 145.
    Filipcsei G, Csetneki I, Szilagyi A, Zrinyi M (2007) Magnetic field-responsive smart polymer composites. In: Abe A, Albertsson A-C, Coates GW, Genzer J, Kobayashi S, Lee K-S, Leibler L, Long TE, Möller M, Okay O, Percec V, Tang BZ, Terentjev EM, Vicent MJ, Voit B, Wiesner U, Zhang X (eds) Advances in polymer science, vol 206. Springer, Berlin, pp 137–189Google Scholar
  146. 146.
    Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20:3404–3415CrossRefGoogle Scholar
  147. 147.
    Stepanov GV, Borin DY, Raikher YL, Melenev PV, Perov NS (2008) Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J Phys 20:204121 (6 pp) Google Scholar
  148. 148.
    Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099–7116CrossRefGoogle Scholar
  149. 149.
    Ding XB, Sun ZH, Wan GX, Jiang YY (1998) Preparation of thermosensitive magnetic particles by dispersion polymerization. React Funct Polym 38:11–15CrossRefGoogle Scholar
  150. 150.
    Zrínyi M, Barsi L, Büki A (1996) Deformation of ferrogels induced by nonuniform magnetic fields. J Chem Phys 104:8750–8756CrossRefGoogle Scholar
  151. 151.
    Visakh PM, Thomas S, Chandra AK, Mathew AP (2013) Advances in elastomers II: composites and nanocomposites. Springer, BerlinGoogle Scholar
  152. 152.
    Kost J, Langer R (2012) Responsive polymeric delivery systems. Adv Drug Deliv Rev 64:327–341CrossRefGoogle Scholar
  153. 153.
    Luo L-B, Yu S-H, Qian H-S, Gong J-Y (2006) Large scale synthesis of uniform silver@carbon rich composite (carbon and cross-linked PVA) sub-microcables by a facile green chemistry carbonization approach. Chem Commun 793–795Google Scholar
  154. 154.
    Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core–shell microgels. Macromolecules 33:8301–8306CrossRefGoogle Scholar
  155. 155.
    Zhou S, Chu B (1998) Synthesis and volume phase transition of poly(methacrylic acid- co-N-isopropylacrylamide) microgel particles in water. J Phys Chem B 102:1364–1371CrossRefGoogle Scholar
  156. 156.
    Galeotti F, Bertini F, Scavia G, Bolognesi A (2011) A controlled approach to iron oxide nanoparticles functionalization for magnetic polymer brushes. J Colloid Interface Sci 360:540–547CrossRefGoogle Scholar
  157. 157.
    Li X, Liu Y, Xu Z, Yan H (2011) Preparation of magnetic microspheres with thiol-containing polymer brushes and immobilization of gold nanoparticles in the brush layer. Eur Polym J 47:1877–1884CrossRefGoogle Scholar
  158. 158.
    Liu B, Zhang D, Wang J, Chen C, Yang X, Li C (2013) Multilayer magnetic composite particles with functional polymer brushes as stabilizers for gold nanocolloids and their recyclable catalysis. J Phys Chem C 117:6363–6372CrossRefGoogle Scholar
  159. 159.
    Xu F, Geiger JH, Baker GL, Bruening ML (2011) Polymer brush-modified magnetic nanoparticles for His-tagged protein purification. Langmuir 27:3106–3112CrossRefGoogle Scholar
  160. 160.
    Ranjan R, Brittain WJ (2007) Combination of living radical [polymerization and click chemistry for surface modification. Macromolecules 40:6217–6223CrossRefGoogle Scholar
  161. 161.
    Schmidt AM (2005) The synthesis of magnetic core-shell nanoparticles by surface-initiated ring-opening polymerization of e-caprolactone. Macromol Rapid Commun 26:93–97CrossRefGoogle Scholar
  162. 162.
    Moraes J, Ohno K, Maschmeyer T, Perrier S (2013) Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization. Chem Commun 49:9077–9088CrossRefGoogle Scholar
  163. 163.
    Vestal CR, Zhang ZJ (2002) Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J Am Chem Soc 124:14312–14313CrossRefGoogle Scholar
  164. 164.
    Wang Y, Teng X, Wang J-S, Yang H (2003) Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3 @polystyrene core–shell nanoparticles. Nano Lett 3:789–793CrossRefGoogle Scholar
  165. 165.
    Achilleos DS, Vamvakaki M (2010) End-grafted polymer chains onto inorganic nano-objects. Materials 3:1981–2026CrossRefGoogle Scholar
  166. 166.
    Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS et al (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430CrossRefGoogle Scholar
  167. 167.
    Kloust H, Pöselt E, Kappen S, Schmidtke C, Kornowski A, Pauer W et al (2012) Ultrasmall biocompatible nanocomposites: a new approach using seeded emulsion polymerization for the encapsulation of nanocrystals. Langmuir 28:7276–7281CrossRefGoogle Scholar
  168. 168.
    Chern CS (2006) Emulsion polymerization mechanisms and kinetics. Prog Polym Sci 31:443–486CrossRefGoogle Scholar
  169. 169.
    Keng PY, Bull MM, Shim I-B, Nebesny KG, Armstrong NR, Sung Y et al (2011) Colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles into Pt-Co3O4 nanowires. Chem Mater 23:1120–1129CrossRefGoogle Scholar
  170. 170.
    Cuppoletti J (2011) Metal, ceramic and polymeric composites for various uses. InTech, chap 25Google Scholar
  171. 171.
    Tanahashi M (2010) Development of fabrication methods of filler/polymer nanocomposites: with focus on simple melt-compounding-based approach without surface modification of nanofillers. Materials 3:1593–1619CrossRefGoogle Scholar
  172. 172.
    Yang T-I, Brown RNC, Kempel LC, Kofinas P (2008) Magneto-dielectric properties of polymer—Fe3O4 nanocomposites. J Magn Magn Mater 320:2714–2720CrossRefGoogle Scholar
  173. 173.
    Wang D, Wang K, Xu W (2013) Novel fabrication of magnetic thermoplastic nanofibers via melt extrusion of immiscible blends. Polym Adv Technol 24:70–74CrossRefGoogle Scholar
  174. 174.
    Bin Y, Yamanaka A, Chen QY, Xi Y, Jiang XW, Matsuo M (2007) Morphological, electrical and mechanical properties of ultrahigh molecular weight polyethylene and multi-wall carbon nanotube composites prepared in decalin and paraffin. Polym J 39:598–609CrossRefGoogle Scholar
  175. 175.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer 42:3301–3304CrossRefGoogle Scholar
  176. 176.
    Pan G, Guo Q, Tian A, He Z (2008) Mechanical behaviors of Al2O3 nanoparticles reinforced polyetheretherketone. Mater Sci Eng A 492:383–391CrossRefGoogle Scholar
  177. 177.
    Pablico-Lansigan MH, Situ SF, Samia ACS (2013) Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 5:4040–4055CrossRefGoogle Scholar
  178. 178.
    Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic Press, San DiegoGoogle Scholar
  179. 179.
    Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–432CrossRefGoogle Scholar
  180. 180.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRefGoogle Scholar
  181. 181.
    Stuart BH (2004) Infrared spectroscopy [electronic resource]: fundamentals and applications. Wiley, HobokenCrossRefGoogle Scholar
  182. 182.
    Wang XY, Jin BK, Lin XQ (2002) In-situ FTIR spectroelectrochemical study of dopamine at a glassy carbon electrode in a neutral solution. Anal Sci 18:931–933CrossRefGoogle Scholar
  183. 183.
    Modak S, Cheung NK (2007) Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Investig 25:67–77CrossRefGoogle Scholar
  184. 184.
    Yoshida S, Fukumoto S, Kawaguchi H, Sato S, Ueda R, Furukawa K (2001) Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 61:4244–4252Google Scholar
  185. 185.
    Jiao P, Zhou H, Otto M, Mu Q, Li L, Su G et al (2011) Leading neuroblastoma cells to die by multiple premeditated attacks from a multifunctionalized nanoconstruct. J Am Chem Soc 133:13918–13921CrossRefGoogle Scholar
  186. 186.
    Ross CA, Smith HI, Savas T, Schattenburg M, Farhoud M, Hwang M et al (1999) Fabrication of patterned media for high density magnetic storage. J Vac Sci Technol B 17:3168–3176CrossRefGoogle Scholar
  187. 187.
    Albrecht TR, Bedau D, Dobisz E, Gao H, Grobis M, Hellwig O et al (2013) Bit patterned media at 1 Tdot/in(2) and beyond. IEEE Trans Magn 49:773–778CrossRefGoogle Scholar
  188. 188.
    Kikitsu A, Maeda T, Hieda H, Yamamoto R, Kihara N, Kamata Y (2013) 5 Tdots/in(2) bit patterned media fabricated by a directed self-assembly mask. IEEE Trans Magn 49:693–698CrossRefGoogle Scholar
  189. 189.
    Terris BD, Thomson T (2005) Nanofabricated and self-assembled magnetic structures as data storage media. J Phys D 38:R199–R222CrossRefGoogle Scholar
  190. 190.
    Broers AN, Hoole ACF, Ryan JM (1996) Electron beam lithography—resolution limits. Microelectron Eng 32:131–142CrossRefGoogle Scholar
  191. 191.
    Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A et al (2000) Electron beam lithography: resolution limits and applications. Appl Surf Sci 164:111–117CrossRefGoogle Scholar
  192. 192.
    Tseng AA, Chen K, Chen CD, Ma KJ (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manuf 26:141–149CrossRefGoogle Scholar
  193. 193.
    Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276:1401–1404CrossRefGoogle Scholar
  194. 194.
    Ruiz R, Kang HM, Detcheverry FA, Dobisz E, Kercher DS, Albrecht TR et al (2008) Density multiplication and improved lithography by directed block copolymer assembly. Science 321:936–939CrossRefGoogle Scholar
  195. 195.
    Fasolka MJ, Mayes AM (2001) Block copolymer thin films: physics and applications. Ann Rev Mater Res 31:323–355CrossRefGoogle Scholar
  196. 196.
    Stoykovich MP, Nealey PF (2006) Block copolymers and conventional lithography. Mater Today 9:20–29CrossRefGoogle Scholar
  197. 197.
    Hogg CR, Majetich SA, Bain JA (2010) Investigating pattern transfer in the small-gap regime using electron-beam stabilized nanoparticle array etch masks. IEEE Trans Magn 46:2307–2310CrossRefGoogle Scholar
  198. 198.
    Keil D, Anderson E (2001) Characterization of reactive ion etch lag scaling. J Vac Sci Technol B 19:2082–2088CrossRefGoogle Scholar
  199. 199.
    Seshadri K, Froyd K, Parikh AN, Allara DL, Lercel MJ, Craighead HG (1996) Electron-beam-induced damage in self-assembled monolayers. J Phys Chem 100:15900–15909CrossRefGoogle Scholar
  200. 200.
    Lercel MJ, Rooks M, Tiberio RC, Craighead HG, Sheen CW, Parikh AN et al (1995) Pattern transfer of electron-beam modified self-assembled monolayers for high-resolution lithography. J Vac Sci Technol B 13:1139–1143CrossRefGoogle Scholar
  201. 201.
    Balachova OV, Alves MAR, Swart JW, Braga ES, Cescato L (2000) CF4 plasma etching of materials used in microelectronics manufacturing. Microelectron J 31:213–215CrossRefGoogle Scholar
  202. 202.
    Cao G, Wang Y (2011) Nanostructures & nanomaterials : synthesis, properties, and applications, 2nd edn. World Scientific, New JerseyCrossRefGoogle Scholar
  203. 203.
    Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090CrossRefGoogle Scholar
  204. 204.
    Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217CrossRefGoogle Scholar
  205. 205.
    Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10CrossRefGoogle Scholar
  206. 206.
    Sattel TF, Knopp T, Biederer S, Gleich B, Weizenecker J, Borgert J et al (2009) Single-sided device for magnetic particle imaging. J Phys D 42:022001–022005CrossRefGoogle Scholar
  207. 207.
    Weizenecker J, Borgert J, Gleich B (2007) A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys Med Biol 52:6363–6374CrossRefGoogle Scholar
  208. 208.
    Goodwill PW, Scott GC, Stang PP, Conolly SM (2009) Narrowband magnetic particle imaging. IEEE Trans Med Imaging 28:231–1237CrossRefGoogle Scholar
  209. 209.
    Goodwill PW, Conolly SM (2010) The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 29:851–1859CrossRefGoogle Scholar
  210. 210.
    Ferguson RM, Minard KR, Khandhar AP, Krishnan KM (2011) Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 38:1619–1626CrossRefGoogle Scholar
  211. 211.
    Ferguson RM, Minard KR, Krishnan KM (2009) Optimization of nanoparticle core size for magnetic particle imaging. J Magn Magn Mater 321:1548–1551CrossRefGoogle Scholar
  212. 212.
    Ferguson RM, Khandhar AP, Krishnan KM (2012) Tracer design for magnetic particle imaging. J Appl Phys 111:07B3181–07B3185CrossRefGoogle Scholar
  213. 213.
    Goodwill PW, Conolly SM (2011) Experimental demonstration of X-space magnetic particle imaging. Proc SPIE7 965:79650U1–79650U6Google Scholar
  214. 214.
    Lüdtke-Buzug K, Rapoport DH, Schneider D. Presented at the 8th international conference on the scientific and clincal applications of magnetic carriers, Rostock, Germany, 2010Google Scholar
  215. 215.
    Knopp T, Buzug TM (2012) Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation. Spinger, BerlinCrossRefGoogle Scholar
  216. 216.
    Bulte JW, Gleich B, Weizenecker J, Bernard S, Walczak P, Markov DE et al (2008) Developing cellular MPI: initial experience. Proc Intl Soc Mag Reson Med 16:201–204Google Scholar
  217. 217.
    Markov DE, Boeve H, Gleich B, Borgert J, Antonelli A, Sfara C et al (2010) Human erythrocytes as nanoparticle carriers for magnetic particle imaging. Phys Med Biol 55:6461–6473CrossRefGoogle Scholar
  218. 218.
    Gilchris RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606CrossRefGoogle Scholar
  219. 219.
    Meyers PH, Cronic F, NIice CM (1963) Experimental approach in the use and magnetic control of metallic iron particles in the lymphatic and vascular system of dogs as a contrast and isotopic agent. Am J Roentgenol Radium Therapy Nucl Med 90:1068–1077Google Scholar
  220. 220.
    Häfeli UO (2004) Magnetically modulated therapeutic systems. Int J Pharm 277:19–24CrossRefGoogle Scholar
  221. 221.
    Barakat NS (2009) Magnetically modulated nanosystems: a unique drug-delivery platform. Nanomedicine 4:799–812CrossRefGoogle Scholar
  222. 222.
    McBain SC, Yiu HHP, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3:169–180Google Scholar
  223. 223.
    Lee J-H, Kim J-W, Cheon J (2013) Magnetic nanoparticles for multi-imaging and drug delivery. Mol Cells 35:274–284CrossRefGoogle Scholar
  224. 224.
    Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288CrossRefGoogle Scholar
  225. 225.
    Wang LY, Luo J, Fan Q, Suzuki M, Suzuki IS, Engelhard MH et al (2005) Monodispersed core-shell Fe3O4@Au nanoparticles. J Phys Chem B 109:21593–21601CrossRefGoogle Scholar
  226. 226.
    Grumezescu AM (2015) Biocompatible magnetic hollow silica microspheres for drug delivery. Curr Org Chem 17:1029–1033CrossRefGoogle Scholar
  227. 227.
    Márquez F, Herrera GM, Campo T, Cotto M, Ducongé J, Sanz JM et al (2012) Preparation of hollow magnetite microspheres and their applications as drugs carriers. Nanoscale Res Lett 7:210 (11 pp) CrossRefGoogle Scholar
  228. 228.
    Fuchigami T, Kawamura R, Kitamoto Y, Nakagawa M, Namiki Y (2012) A magnetically guided anti-cancer drug delivery system using porous FePt capsules. Biomaterials 33:1682–1687CrossRefGoogle Scholar
  229. 229.
    Chen ML, He YJ, Chen XW, Wang JH (2012) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28:16469–16476CrossRefGoogle Scholar
  230. 230.
    Masotti A, Caporali A (2013) Preparation of magnetic carbon nanotubes (Mag-CNTs) for biomedical and biotechnological applications. Int J Mol Sci 14:24619–24642CrossRefGoogle Scholar
  231. 231.
    Mashhadizadeh MH, Amoli-Diva M (2012) Drug-carrying amino silane coated magnetic nanoparticles as potential vehicles for delivery of antibiotics. J Nanomed Nanotechnol 3:1000139 (7 pp) CrossRefGoogle Scholar
  232. 232.
    Häfeli UO, Sweeney SM, Beresford BA, Humm JL, Macklis RM (1995) Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 22:147–155CrossRefGoogle Scholar
  233. 233.
    Edelman ER, Langer R (1993) Optimization of release from magnetically controlled polymeric drug release devices. Biomaterials 14:621–626CrossRefGoogle Scholar
  234. 234.
    Chen H, Langer R (1997) Magnetically-responsive polymerized liposomes as potential oral delivery vehicles. Pharm Res 14:537–540CrossRefGoogle Scholar
  235. 235.
    Jain TK, Richey J, Strand M, Leslie-Pelecky DL, Flask CA, Labhasetwar V (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021CrossRefGoogle Scholar
  236. 236.
    Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23:2436–2442CrossRefGoogle Scholar
  237. 237.
    Terreno E, Castelli DD, Viale A, Aime S (2010) Challenges for molecular magnetic resonance imaging. Chem Rev 110:3019–3042CrossRefGoogle Scholar
  238. 238.
    Waters EA, Wickline SA (2008) Contrast agents for MRI. Basic Res Cardiol 103:114–121CrossRefGoogle Scholar
  239. 239.
    Strijkers GJ, Mulder WJM, van Tilborg GAF, Nicolay K (2007) MRI contrast agents: current status and future perspectives. Anticancer Agents Med Chem 7:291–305CrossRefGoogle Scholar
  240. 240.
    Advanced Magnetics (1996) FDA approval for Feridex iv liver contrast agent. Drug News Persp 9:422–422Google Scholar
  241. 241.
    Hamm B, Staks T, Tapuitz M, Maibauer R, Speidel A, Huppertz A et al (1994) Contrast-enhanced MR-imaging of liver and spleen—1st experience in humans with a new superparamagnetic iron oxide. J Magn Res Imaging 4:659–668CrossRefGoogle Scholar
  242. 242.
    Baiu DC, Brazel C, Bao Y, Otto M (2013) Interactions of iron oxide nanoparticles with the immune system: challenges and opportunities for their use in nano-oncology. Curr Pharm Des 19:6606–6621CrossRefGoogle Scholar
  243. 243.
    Brisset JC, Sigovan M, Chauveau F, Riou A, Devillard E, Desestret V et al (2011) Quantification of iron-labeled cells with positive contrast in mouse brains. Mol Imaging Biol 13:672–678CrossRefGoogle Scholar
  244. 244.
    Okuhata Y (1999) Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev 37:121–137CrossRefGoogle Scholar
  245. 245.
    Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Exp Opin Drug Metabol Toxicol 5:403–416CrossRefGoogle Scholar
  246. 246.
    Lin CH, Cai SH, Feng JH (2012) Positive contrast imaging of SPIO nanoparticles. J Nanomater 2012:734842 (7 pp) Google Scholar
  247. 247.
    Eibofner F, Steidle G, Kehlbach R, Bantleon R, Schick F (2010) Positive contrast imaging of iron oxide nanoparticles with susceptibility-weighted imaging. Magn Reson Med 64:1027–1038CrossRefGoogle Scholar
  248. 248.
    Zhu HT, Demachi K, Sekino M (2011) Phase gradient imaging for positive contrast generation to superparamagnetic iron oxide nanoparticle-labeled targets in magnetic resonance imaging. Magn Reson Med 29:891–898Google Scholar
  249. 249.
    Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T-1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9:4434–4440CrossRefGoogle Scholar
  250. 250.
    Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 2009:2477–2481CrossRefGoogle Scholar
  251. 251.
    Taboada E, Rodriguez E, Roig A, Oro J, Roch A, Muller RN (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T-1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir 23:4583–4588CrossRefGoogle Scholar
  252. 252.
    Li Z, Yi PW, Sun Q, Lei H, Zhao HL, Zhu ZH et al (2012) Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater 22:2387–2393CrossRefGoogle Scholar
  253. 253.
    Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703–717CrossRefGoogle Scholar
  254. 254.
    Prakash A, Zhu HG, Jones CJ, Benoit DN, Ellsworth AZ, Bryant EL et al (2009) Bilayers as phase transfer agents for nanocrystals prepared in nonpolar solvents. ACS Nano 3:2139–2146CrossRefGoogle Scholar
  255. 255.
    Lu M, Cohen MH, Rieves D, Pazdur R (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85:315–319Google Scholar
  256. 256.
    Goodwill PW, Saritas EU, Croft LR, Kim TN, Krishnan KM, Schaffer DV et al (2012) X-space MPI: magnetic nanoparticles for safe medical imaging. Adv Mater 24:3870–3877CrossRefGoogle Scholar
  257. 257.
    Khandhar AP, Ferguson RM, Arami H, Krishnan KM (2013) Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. Biomaterials 34:3837–3845CrossRefGoogle Scholar
  258. 258.
    Douek M, Klaase J, Monypenny I, Kothari A, Zechmeister K, Brown D et al (2014) Sentinel node biopsy using a magnetic tracer versus standard technique: the SentiMAG multicentre trial. Ann Surg Oncol 21:1237–1245CrossRefGoogle Scholar
  259. 259.
    Wong SL, Balch CM, Hurley P, Agarwala SS, Akhurst TJ, Cochran A et al (2012) Sentinel lymph node biopsy for melanoma: American Society of Clinical Oncology and Society of Surgical Oncology joint clinical practice guideline. J Clin Oncol 30:2912–2918CrossRefGoogle Scholar
  260. 260.
    Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185CrossRefGoogle Scholar
  261. 261.
    Wiley DT, Webster P, Gale A, Davis ME (2013) Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA 110:8662–8667CrossRefGoogle Scholar
  262. 262.
    Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 16:251–270CrossRefGoogle Scholar
  263. 263.
    Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170CrossRefGoogle Scholar
  264. 264.
    Sarin H (2010) Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res 2:14 (19 pp) CrossRefGoogle Scholar
  265. 265.
    Hume DA (2006) The mononuclear phagocyte system. Curr Opin Immunol 18:49–53CrossRefGoogle Scholar
  266. 266.
    Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1 (17 pp) CrossRefGoogle Scholar
  267. 267.
    Wisse E, Jacobs F, Topal B, Frederik P, De Geest B (2008) The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther 15:1193–1199CrossRefGoogle Scholar
  268. 268.
    Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34:455–465CrossRefGoogle Scholar
  269. 269.
    Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC et al (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–2417CrossRefGoogle Scholar
  270. 270.
    Ahmed M, Purushotham AD, Douek M (2014) Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol 15:e351–e362CrossRefGoogle Scholar
  271. 271.
    Klimberg VS, Rubio IT, Henry R, Cowan C, Colvert M, Korourian S (1999) Subareolar versus peritumoral injection for location of the sentinel lymph node. Ann Surg 229:860–865CrossRefGoogle Scholar
  272. 272.
    Thill M, Kurylcio A, Welter R, van Haasteren V, Grosse B, Berclaz G et al (2014) The Central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast 23:175–179CrossRefGoogle Scholar
  273. 273.
    Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee JM, Jacobs PM et al (2006) Preclinical safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 41:313–324CrossRefGoogle Scholar
  274. 274.
    Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006) In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36CrossRefGoogle Scholar
  275. 275.
    Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858CrossRefGoogle Scholar
  276. 276.
    Matuszewski L, Persigehl T, Wall A, Schwindt W, Tombach B, Fobker M et al (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235:155–161CrossRefGoogle Scholar
  277. 277.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515CrossRefGoogle Scholar
  278. 278.
    Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102CrossRefGoogle Scholar
  279. 279.
    Storm G, Belliot SO, Daemen T, Lasic DD (1995) Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48CrossRefGoogle Scholar
  280. 280.
    Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437CrossRefGoogle Scholar
  281. 281.
    Almeida JP, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine 6:815–835CrossRefGoogle Scholar
  282. 282.
    Schlenoff JB (2014) Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir 30:9625–9636CrossRefGoogle Scholar
  283. 283.
    Shuai XT, Merdan T, Unger F, Wittmar M, Kissel T (2003) Novel biodegradable ternary copolymers hy-PEI-g-PCL-b-PEG: synthesis, characterization, and potential as efficient nonviral gene delivery vectors. Macromolecules 36:5751–5759CrossRefGoogle Scholar
  284. 284.
    Jokerst JV, Lobovkina T, Zare RN, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6:715–728CrossRefGoogle Scholar
  285. 285.
    Gong P, Grainger DW (2007) Nonfouling surfaces: a review of principles and applications for microarray capture design assays. Method Mol Biol 381:59–92Google Scholar
  286. 286.
    Beard JL, Dawson H, Pinero DJ (1996) Iron metabolism: a comprehensive review. Nutr Rev 54:295–317CrossRefGoogle Scholar
  287. 287.
    Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93:1721–1741CrossRefGoogle Scholar
  288. 288.
    Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995CrossRefGoogle Scholar
  289. 289.
    Galvez N, Fernandez B, Sanchez P, Cuesta R, Ceolin M, Clemente-Leon M et al (2008) Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J Am Chem Soc 130:8062–8068CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yuping Bao
    • 1
  • Tianlong Wen
    • 2
  • Anna Cristina S. Samia
    • 3
  • Amit Khandhar
    • 4
  • Kannan M. Krishnan
    • 5
  1. 1.Chemical and Biological EngineeringThe University of AlabamaTuscaloosaUSA
  2. 2.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  3. 3.ChemistryCase Western Reserve UniversityClevelandUSA
  4. 4.Lodespin LabsSeattleUSA
  5. 5.Materials Science and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations