Advertisement

Journal of Materials Science

, Volume 50, Issue 22, pp 7413–7423 | Cite as

Strong reinforcing effects from galactoglucomannan hemicellulose on mechanical behavior of wet cellulose nanofiber gels

  • Kasinee Prakobna
  • Victor Kisonen
  • Chunlin Xu
  • Lars A. BerglundEmail author
Original Paper

Abstract

Softwood hemicelluloses could potentially be combined with cellulose and used in packaging materials. In the present study, galactoglucomannan (GGM) is adsorbed to wood cellulose nanofibers (CNF) and filtered and dried or hot-pressed to form nanocomposite films. The CNF/GGM fibril diameters are characterized by AFM, and the colloidal behavior by dynamic light scattering. Mechanical properties are measured in uniaxial tension for wet gels, dried films, and hot-pressed films. The role of GGM is particularly important for the wet gels. The wet gels of CNF/GGM exhibit remarkable improvement in mechanical properties. FE-SEM fractography and moisture sorption studies are carried out to interpret the results for hygromechanical properties. The present study shows that GGM may find use as a molecular scale cellulose binding agent, causing little sacrifice in mechanical properties and improving wet strength.

Keywords

Hemicellulose Plant Cell Wall Cellulose Microfibril Moisture Sorption Cellulose Nanofibers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Financial support from the Wallenberg Wood Science Center (WWSC) and a scholarship fund from the Siam Cement Group (SCG) are gratefully acknowledged. Extraction and analysis of the GGM component are part of the activities at the Johan Gadolin Process Chemistry Center, a Center of Excellence by Åbo Akademi University.

Supplementary material

10853_2015_9299_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 52 kb)

References

  1. 1.
    Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95CrossRefGoogle Scholar
  2. 2.
    Kisonen V, Prakobna K, Xu C et al (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J Mater Sci 50:3189–3199. doi: 10.1007/s10853-015-8882-7 CrossRefGoogle Scholar
  3. 3.
    Carpita NC, McCann MC (2000) Chapter 2 “The cell wall”. In: Buchanan BB, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society Plant Physiologists, Rockville, pp 52–108Google Scholar
  4. 4.
    Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The Biochemistry of Plants. Acedamic Press Inc, New York, pp 297–371CrossRefGoogle Scholar
  5. 5.
    Dinwoodie JM (1981) Timber: its nature and behaviour. Van Nostrand Reinhold, New YorkGoogle Scholar
  6. 6.
    Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101–116CrossRefGoogle Scholar
  7. 7.
    Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–659CrossRefGoogle Scholar
  8. 8.
    Sturcova A, Davies GR, Eicchorn S (2006) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRefGoogle Scholar
  9. 9.
    Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRefGoogle Scholar
  10. 10.
    Saito T, Kuramae R, Wohlert J, Berglund LA, Isogai A (2013) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14:248–253CrossRefGoogle Scholar
  11. 11.
    Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRefGoogle Scholar
  12. 12.
    Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  13. 13.
    Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 37:815–827Google Scholar
  14. 14.
    Hansen NML, Blomfeldt TOJ, Hedenqvist MS, Plackett DV (2012) Properties of plasticized composite films prepared from nanofibrillated cellulose and birch wood xylan. Cellulose 19:2015–2031CrossRefGoogle Scholar
  15. 15.
    Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose 18:713–726CrossRefGoogle Scholar
  16. 16.
    Stevanic JS, Mikkonen KS, Xu C, Tenkanen M, Berglund L, Salmen L (2015) Wood cell wall mimicking for composite films of spruce nanofibrillated cellulose with spruce galactoglucomannan and arabinoglucuronoxylan. J Mater Sci 49:5043–5055. doi: 10.1007/s10853-014-8210-7 CrossRefGoogle Scholar
  17. 17.
    Prakobna K, Terenzi C, Zhou Q, Furo I, Berglund LA (2015) Core-shell cellulose nanofibers for biocomposites—nanostructural effects in hydrated state. Carbohydr Polym 125:92–102CrossRefGoogle Scholar
  18. 18.
    Sjöström E (1993) Wood chemistry: fundamentals and applications. Academic Press Inc., San Diego, pp 51–70CrossRefGoogle Scholar
  19. 19.
    Willför S, Sjöholm R, Laine C, Roslund M, Hemming J, Holmbom B (2003) Characterisation of water-soluble galactoglucomannans from Norway spruce wood and thermomechanical pulp. Cabohydr Polym 52:175–187CrossRefGoogle Scholar
  20. 20.
    Willför S, Sundberg A, Hemming J, Holmbom B (2005) Polysaccharides in some industrially important softwood species. Wood Sci Technol 39:245–257CrossRefGoogle Scholar
  21. 21.
    Hartman J, Albertsson AC, Lindblad MS, Sjöberg J (2006) Oxygen barrier materials from renewable sources: material properties of softwood hemicellulose-based films. J Appl Polym Sci 100:2985–2991CrossRefGoogle Scholar
  22. 22.
    Mikkonen KS, Heikkilä MI, Helen H, Hyvönen L, Tenkanen M (2010) Spruce galactoglucomannan films show promising barrier properties. Carbohydr Polym 79:1107–1112CrossRefGoogle Scholar
  23. 23.
    Mikkonen KS, Yadav MP, Cooke P, Willför S, Hicks KB, Tenkanen M (2008) Films from spruce galactogluccomannan blended with poly(vinyl alcohol), corn arabonoxylan, and konjac glucomannan. Bioresource 3:178–191Google Scholar
  24. 24.
    Teeri TT, Brumer H, Daniel G, Gatenholm P (2007) Biomimetic engineering of cellulose-based materials. Trends Biotechnol 25:299–306CrossRefGoogle Scholar
  25. 25.
    Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563CrossRefGoogle Scholar
  26. 26.
    Olszewska A, Valle-Delgado JJ, Nikinmaa M, Laine J, Österberg M (2013) Direct measurements of non-ionic attraction and nanoscaled lubrication in biomimetic composites from nanofibrillated cellulose and modified carboxymethylated cellulose. Nanoscale 5:11837–11844CrossRefGoogle Scholar
  27. 27.
    Prakobna K, Galland S, Berglund LA (2015) High-performance and moisture-stable cellulose-starch nanocomposites based on bioinspired core-shell nanofibers. Biomacromolecules 16:904–912CrossRefGoogle Scholar
  28. 28.
    Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structure of high toughness. Biomacromolecules 9:1579–1585CrossRefGoogle Scholar
  29. 29.
    Sehaqui H, Zhou Q, Berglund LA (2011) Nanostructured biocomposites of high toughness—a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7:7342–7350CrossRefGoogle Scholar
  30. 30.
    Lucenius J, Parikka K, Österberg M (2014) Nanocomposite films based on cellulose nanofibrils and water-soluble polysaccharides. React Funct Polym 85:167–174CrossRefGoogle Scholar
  31. 31.
    Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ (1999) Roles of cellulose and xyloglucan in determining the mechnaical properties of primary plant cell walls. Plant Physiol 121:657–663CrossRefGoogle Scholar
  32. 32.
    Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ (2002) Mechanical properties of primary plant cell wall analogues. Planta 215:989–996CrossRefGoogle Scholar
  33. 33.
    Cybulska J, Vanstreels E, Ho QT et al (2010) Mechanical characteristics of artificial cell walls. J Food Eng 96:287–294CrossRefGoogle Scholar
  34. 34.
    Willför S, Rehn P, Sundberg A, Sundberg K, Holmbom B (2003) Recovery of water-soluble acetylgalactoglucomannans from mechanical pulp of spruce. Tappi J 2:27–32Google Scholar
  35. 35.
    Xu C, Eckerman C, Smeds A, Reunanen M, Eklund PC, Sjöholm R, Willför S (2009) Rheological properties of water-soluble spruce O-acetyl galactoglucomannans. Carbohydr Polym 75:p498–p504CrossRefGoogle Scholar
  36. 36.
    Michielsen S (1999) Specific refractive index increments of polymers in dilute solution. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook. Wiley, New York pp, pp 547–627Google Scholar
  37. 37.
    Sundberg A, Kenneth S, Lillandt C, Holmbom B (1996) Determination of hemicelluloses and pectins in wood and pulp fibres by acid methanolysis and gas chromatography. Nord Pulp Paper Res J 11:216–219CrossRefGoogle Scholar
  38. 38.
    Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose-inorganic nanopaper structures. Biomacromolecules 11:2195–2198CrossRefGoogle Scholar
  39. 39.
    Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644CrossRefGoogle Scholar
  40. 40.
    Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Cabohydr Res 307:299–309CrossRefGoogle Scholar
  41. 41.
    Eronen P, Österberg M, Heikkinen S, Tenkanen S, Laine J (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr Polym 86:1281–1290CrossRefGoogle Scholar
  42. 42.
    Vincken JP, Keizer AD, Beldman G, Voragen AGJ (1995) Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 108:1579–1585CrossRefGoogle Scholar
  43. 43.
    Xu C, Eckerman C, Smeds A et al (2011) Carboxymethylated spruce galactoglucomannans: preparation, characterisation, dispersion stability, water-in-oil emulsion stability, and sorption on cellulose surface. Nord Pulp Paper Res J 26:167–178CrossRefGoogle Scholar
  44. 44.
    Hubbe MA, Rojas OJ (2008) Colloidal stability and aggregation of lignocellulosic material in aqueous: a review. BioResources 3:1419–1491Google Scholar
  45. 45.
    Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338CrossRefGoogle Scholar
  46. 46.
    Fernandes AN, Thomas L, Altaner CM et al (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS Plus 108:E1195–E1203CrossRefGoogle Scholar
  47. 47.
    Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1995) In vitro assembly of cellulose/XG networks: ultrastructure and molecular. Plant J 8:491–504CrossRefGoogle Scholar
  48. 48.
    Nilsson H, Galland S, Larsson PT, Gamstedt EK, Nishino T, Berglund LA, Iversen T (2010) A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos Sci Technol 70:1704–1712CrossRefGoogle Scholar
  49. 49.
    Nilsson H, Galland S, Larsson PT, Gamstedt EK, Iversen T (2012) Compression molded wood pulp biocomposites: a study of hemicellulose influence on cellulose supramolecular structure and material properties. Cellulose 19:751–760CrossRefGoogle Scholar
  50. 50.
    Salmen L, Olsson AM (1998) Interaction between hemicelluloses, lignin and cellulose: structure and property relationships. J Pulp Pap Sci 24:99–103Google Scholar
  51. 51.
    Kelly A (1970) Interface effects and the work of fracture of a fibrous composite. Proc R Soc Lond A 319:95–116CrossRefGoogle Scholar
  52. 52.
    Brunauer S (1943) The adsorption of gases and vapors-I physical adsorption. Princeton University Press, PrincetonGoogle Scholar
  53. 53.
    Obataya E, Norimoto M, Gril J (1998) The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39:3059–3064CrossRefGoogle Scholar
  54. 54.
    Luo HL, Lian JJ, Wan YZ, Huang Y, Wang YL, Jiang HJ (2006) Moisture absorption in VARTMed three-dimensional braided carbon-epoxy composites with different interface conditons. Mater Sci Eng A 425:70–77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Kasinee Prakobna
    • 1
    • 2
  • Victor Kisonen
    • 3
  • Chunlin Xu
    • 3
  • Lars A. Berglund
    • 1
    • 2
    Email author
  1. 1.Department of Fiber and Polymer TechnologyKTH Royal Institute of TechnologyStockholmSweden
  2. 2.Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSweden
  3. 3.Johan Gadolin Process Chemistry Center, c/o Laboratory of Wood and Paper ChemistryÅbo Akademi UniversityTurkuFinland

Personalised recommendations