Journal of Materials Science

, Volume 50, Issue 22, pp 7364–7373 | Cite as

Dog-bone copper specimens prepared by one-step spark plasma sintering

  • Claire Arnaud
  • Charles Manière
  • Geoffroy Chevallier
  • Claude Estournès
  • Ronan Mainguy
  • Florence Lecouturier
  • David Mesguich
  • Alicia Weibel
  • Lise Durand
  • Christophe LaurentEmail author
Original Paper


Copper dog-bone specimens are prepared by one-step spark plasma sintering (SPS). For the same SPS cycle, the influence of the nature of the die (graphite or WC–Co) on the microstructure, microhardness, and tensile strength is investigated. All samples exhibit a high Vickers microhardness and high ultimate tensile strength. A numerical electro-thermal model is developed, based on experimental data inputs such as simultaneous temperature and electrical measurements at several key locations in the SPS stack, to evaluate the temperature and current distributions for both dies. Microstructural characterizations show that samples prepared using the WC–Co die exhibit a larger grain size, pointing out that it reached a higher temperature during the SPS cycle. This is confirmed by numerical simulations demonstrating that with the WC–Co die, the experimental sample temperature at the beginning of the dwell is higher than the experimental control temperature measured at the outer surface of the die. This difference is mostly ascribed to a high vertical thermal contact resistance and a higher current density flowing through the WC–Co punch/die interface. Indeed, simulations show that current density is maximal just outside the copper sample when using the WC–Co die, whereas by contrast, with the graphite die, current density tends to flow through the copper sample. These results are guidelines for the direct, one-step, preparation of complex-shaped samples by SPS which avoids waste and minimizes machining.


Ultimate Tensile Strength Spark Plasma Sinter Copper Sample Graphitic Paper Experimental Control Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The SEM observations were performed at “Centre de microcaractérisation Raimond Castaing - UMS 3623” (Toulouse). The authors are grateful to Dr. Ch. Guiderdoni for work on the design of the dies and to N. Ferreira, Dr. J. Huez and Pr. A. Peigney for discussions. This work was performed partly under contract NANO2C from Université de Toulouse and Région Midi-Pyrénées and partly under contract MODMAT from Université Toulouse 3 Paul-Sabatier.


  1. 1.
    Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63:127–287CrossRefGoogle Scholar
  2. 2.
    Munir ZA, Quach DV, Ohyanagi M (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19CrossRefGoogle Scholar
  3. 3.
    Vasiliev PO, Shen Z, Hodgkins RP, Bergström L (2006) Meso/macroporous, mechanically stable silica monoliths of complex shape by controlled fusion of mesoporous spherical particles. Chem Mater 18:4933–4938CrossRefGoogle Scholar
  4. 4.
    Jiang D, Hulbert DM, Kuntz JD, Anselmi-Tamburini U, Mukherjee AK (2007) Spark plasma sintering: a high strain rate low temperature forming tool for ceramics. Mater Sci Eng A 463:89–93CrossRefGoogle Scholar
  5. 5.
    Cai K, Romàn-Manso B, Smay JE, Zhou J, Osendi MI, Belmonte M, Miranzo P (2012) Geometrically complex silicon carbide structures fabricated by robocasting. J Am Ceram Soc 95:2660–2666CrossRefGoogle Scholar
  6. 6.
    Monceau D, Oquab D, Estournes C, Boidot M, Selezneff S, Ratel-Ramond N (2010) Thermal barrier systems and multi-layered coatings fabricated by spark plasma sintering for the protection of Ni-base superalloys. Mater Sci Forum 654–656:1826–1831CrossRefGoogle Scholar
  7. 7.
    Voisin T, Durand L, Karnatak N, Le Gallet S, Thomas M, Le Berre Y, Castagné JF, Couret A (2013) Temperature control during spark plasma sintering and application to up-scaling and complex shaping. J Mater Proc Technol 213:269–278CrossRefGoogle Scholar
  8. 8.
    Olevsky E, Khaleghi E, Garcia C, Bradbury W (2010) Fundamentals of spark plasma sintering: applications to net-shaping of high strength temperature resistant components. Mater Sci Forum 654–656:412–415CrossRefGoogle Scholar
  9. 9.
    Chanthapan S, Rape A, Gephart S, Kulkarni AK, Singh J (2011) Industrial scale field assisted sintering: an emerging disruptive manufacturing technology: applications. Adv Mater Proc 169:25–28Google Scholar
  10. 10.
    McWilliams B, Yu J, Zavaliangos A (2015) Fully coupled thermal-electric-sintering simulation of electric field assisted sintering of net-shape compacts. J Mater Sci 50:519–530. doi: 10.1007/s10853-014-8463-1 CrossRefGoogle Scholar
  11. 11.
    Pavia A, Durand L, Ajustron F, Bley V, Chevallier G, Peigney A, Estournès C (2013) Electro-thermal measurements and finite element method simulations of a spark plasma sintering device. J Mater Process Technol 213:1327–1336CrossRefGoogle Scholar
  12. 12.
    Zavaliangos A, Zhang J, Krammer M, Groza JR (2004) Temperature evolution during field activated sintering. Mater Sci Eng A 379:218–228CrossRefGoogle Scholar
  13. 13.
    Maizza G, Grasso S, Sakka Y, Noda T, Ohashi O (2007) Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder. Sci Technol Adv Mater 8:644–654CrossRefGoogle Scholar
  14. 14.
    Maizza G, Grasso S, Sakka Y (2009) Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder. J Mater Sci 44:1219–1236. doi: 10.1007/s10853-008-3179-8 CrossRefGoogle Scholar
  15. 15.
    Cincotti A, Locci AM, Orrù R, Cao G (2007) Modeling of SPS apparatus: temperature, current and strain distribution with no powders. AIChE J 53:703–719CrossRefGoogle Scholar
  16. 16.
    Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions. Mater Sci Eng A 394:139–148CrossRefGoogle Scholar
  17. 17.
    Vanmeensel K, Laptev A, Hennicke J, Vleugels J, Van der Biest O (2005) Modelling of the temperature distribution during field assisted sintering. Acta Mater 53:4379–4388CrossRefGoogle Scholar
  18. 18.
    Ritasalo R, Cura ME, Liu XW, Söderberg O, Ritvonen T, Hannula SP (2010) Spark plasma sintering of submicron-sized Cu-powder—influence of processing parameters and powder oxidization on microstructure and mechanical properties. Mater Sci Eng A 527:2733–2737CrossRefGoogle Scholar
  19. 19.
    Sule R, Olubambi PA, Sigalas I, Asante JKO, Garrett JC (2014) Effect of SPS consolidation parameters on submicron Cu and Cu-CNT composites for thermal management. Powder Technol 258:198–205CrossRefGoogle Scholar
  20. 20.
    Robinson P (1990) Properties and selection nonferrous alloys and special-purpose materials, ASM handbook vol. 2. ASM International, Novelty, p 267Google Scholar
  21. 21.
    Brindley BJ, Worthington PJ (1970) Yield-point phenomena in substitutional alloys. Met Rev 15:101–114CrossRefGoogle Scholar
  22. 22.
    Zhang ZH, Wang FC, Wang L, Li SK (2008) Ultrafine-grained copper prepared by spark plasma sintering process. Mater Sci Eng A 476:201–205CrossRefGoogle Scholar
  23. 23.
    Grasso S, Sakka Y, Maizza G (2009) Pressure effects on temperature distribution during spark plasma sintering with graphite sample. Mater Trans 50:2111–2114CrossRefGoogle Scholar
  24. 24.
    Li W, Olevsky EA, McKittrick J, Maximenko AL, German RM (2012) Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry. J Mater Sci 47:7036–7046. doi: 10.1007/s10853-012-6515-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Claire Arnaud
    • 1
    • 2
  • Charles Manière
    • 1
    • 3
  • Geoffroy Chevallier
    • 1
    • 4
  • Claude Estournès
    • 1
    • 4
  • Ronan Mainguy
    • 5
  • Florence Lecouturier
    • 2
  • David Mesguich
    • 1
  • Alicia Weibel
    • 1
  • Lise Durand
    • 3
  • Christophe Laurent
    • 1
    Email author
  1. 1.Université de Toulouse, Institut Carnot CIRIMAT, UMR CNRS-UPS-INP 5085, Université Paul-SabatierToulouse Cedex 9France
  2. 2.Laboratoire National des Champs Magnétiques Intenses, UPR CNRS-UPS-INSA-UJF 3228ToulouseFrance
  3. 3.CEMES, UPR CNRS 8011, Université de ToulouseToulouseFrance
  4. 4.Plateforme Nationale CNRS de Frittage Flash, PNF2, MHT, Université Paul-SabatierToulouse Cedex 9France
  5. 5.Université de Toulouse, Institut Carnot CIRIMAT, UMR CNRS-UPS-INP 5085, INPT/ENSIACETToulouse Cedex 4France

Personalised recommendations