Journal of Materials Science

, Volume 50, Issue 22, pp 7262–7270 | Cite as

Residual stress distribution and microstructure in the friction stir weld of 7075 aluminum alloy

  • Pengfei Ji
  • Zhongyu Yang
  • Jin ZhangEmail author
  • Lin Zheng
  • Vincent Ji
  • Vincent Klosek
Original Paper


In order to study the relationship between residual stress (RS) and the microstructure of friction stir weld (FSW), RS profiles through thickness in the un-welded aluminum alloy 7075 plate and in middle layer of its FSW joint were determined nondestructively by the short-wavelength X-ray diffraction (SWXRD) and neutron diffraction. Microstructure and mechanical properties of the FSW joint were also studied by optical microscopic analysis, and microhardness and tensile strength measurements. RS profiles measured by the two methods had the same distribution trend. The maximum tensile RS tested by SWXRD and neutron diffraction in transverse and longitudinal direction occurred in the weld nugget. Microhardness in the direction perpendicular to the weld line showed a “W” shape distribution. Position of the local maximal extremum of RS in thermo-mechanically affected zone corresponded to that of minimal microhardness. The grain-refined strengthening caused by the recrystallization in the weld nugget kept the joint from fracturing at this region notwithstanding the maximum tensile RS. And the tensile fracture occurred near the boundary of welding zone and thermo-mechanically affected zone where minimum of hardness and maximum of RS appear at the same position.


Welding Residual Stress Neutron Diffraction Friction Stir Welding Friction Stir Welding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Nature Science Foundation of China (Grant No. 51275037) and National 863 plans project of China (Grant No. 2009AA03Z539). The authors would like to thank the Laboratoire Léon Brillouin (LLB) for the allocation of beam time and China Friction Stirring Weld Center for assistance with the processing of the weldment.


  1. 1.
    Biro AL, Chenelle BF, Lados DA (2012) Processing, microstructure, and residual stress effects on strength and fatigue crack growth properties in friction stir welding: a review. Metall Mater Trans B 43(6):1622–1637. doi: 10.1007/s11663-012-9716-5 CrossRefGoogle Scholar
  2. 2.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1–2):1–78. doi: 10.1016/j.mser.2005.07.001 CrossRefGoogle Scholar
  3. 3.
    Withers PJ, Bhadeshia H (2001) Overview—residual stress part 2—nature and origins. Mater Sci Technol 17(4):366–375CrossRefGoogle Scholar
  4. 4.
    Woo W, Feng Z, Wang X, David SA (2011) Neutron diffraction measurements of residual stresses in friction stir welding: a review. Sci Technol Weld Join 16(1):23–32. doi: 10.1179/136217110X12731414739916 CrossRefGoogle Scholar
  5. 5.
    Paradowska AM, Price JWH, Finlayson TR, Lienert U, Ibrahim R (2010) Comparison of neutron and synchrotron diffraction measurements of residual stress in bead-on-plate weldments. J Press Vessel Technol 132:11502CrossRefGoogle Scholar
  6. 6.
    Farajian M, Nitschke-Pagel T, Wimpory RC, Hofmann M, Klaus M (2011) Residual stress field determination in welds by means of X-ray, synchrotron and neutron diffraction. Materialwiss Werkst 42(11):996–1001CrossRefGoogle Scholar
  7. 7.
    Withers PJ, Bhadeshia H (2001) Overview—residual stress part 1—measurement techniques. Mater Sci Techol 17(4):355–365CrossRefGoogle Scholar
  8. 8.
    He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66. doi: 10.1016/j.pmatsci.2014.03.003 CrossRefGoogle Scholar
  9. 9.
    Aval HJ, Serajzadeh S, Sakharova NA, Kokabi AH, Loureiro A (2012) A study on microstructures and residual stress distributions in dissimilar friction-stir welding of AA5086–AA6061. J Mater Sci 47(14):5428–5437. doi: 10.1007/s10853-012-6430-2 CrossRefGoogle Scholar
  10. 10.
    Aval HJ, Serajzadeh S, Kokabi AH (2012) Experimental and theoretical evaluations of thermal histories and residual stresses in dissimilar friction stir welding of AA5086–AA6061. Int J Adv Manuf Technol 61(1–4):149–160. doi: 10.1007/s00170-011-3713-8 CrossRefGoogle Scholar
  11. 11.
    Prime MB, Gn Upel-Herold T, Baumann JA, Lederich RJ, Bowden DM, Sebring RJ (2006) Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld. Acta Mater 54(15):4013–4021. doi: 10.1016/j.actamat.2006.04.034 CrossRefGoogle Scholar
  12. 12.
    Woo W, An GB, Kingston EJ, DeWald AT, Smith DJ, Hill MR (2013) Through-thickness distributions of residual stresses in two extreme heat-input thick welds: a neutron diffraction, contour method and deep hole drilling study. Acta Mater 61(10):3564–3574. doi: 10.1016/j.actamat.2013.02.034 CrossRefGoogle Scholar
  13. 13.
    Deplus K, Simar A, Van Haver W, de Meester B (2011) Residual stresses in aluminium alloy friction stir welds. Int J Adv Manuf Technol 56(5–8):493–504. doi: 10.1007/s00170-011-3210-0 CrossRefGoogle Scholar
  14. 14.
    Lombard H, Hattingh DG, Steuwer A, James MN (2009) Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds. Mater Sci Eng A 501(1–2):119–124. doi: 10.1016/j.msea.2008.09.078 CrossRefGoogle Scholar
  15. 15.
    Peel M, Steuwer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51(16):4791–4801. doi: 10.1016/S1359-6454(03)00319-7 CrossRefGoogle Scholar
  16. 16.
    Rhodes CG, Mahoney MW, Bingel WH, Spurling RA, Bampton CC (1997) Effects of friction stir welding on microstructure of 7075 aluminum. Scr Mater 36(1):69–75. doi: 10.1016/S1359-6462(96)00344-2 CrossRefGoogle Scholar
  17. 17.
    Mahoney MW, Rhodes CG, Flintoff JG, Spurling RA, Bingel WH (1998) Properties of friction-stir-welded 7075 T651 aluminum. Metall Mater Trans A 29A(7):1955–1964. doi: 10.1007/s11661-998-0021-5 CrossRefGoogle Scholar
  18. 18.
    Hatamleh O, Rivero IV, Maredia A (2008) Residual stresses in friction-stir-welded 2195 and 7075 aluminum alloys. Metall Mater Trans A 39(12):2867–2874. doi: 10.1007/s11661-008-9657-4 CrossRefGoogle Scholar
  19. 19.
    Linton VM, Ripley MI (2008) Influence of time on residual stresses in friction stir welds in agehardenable 7xxx aluminium alloys. Acta Mater 56(16):4319–4327. doi: 10.1016/j.actamat.2008.04.059 CrossRefGoogle Scholar
  20. 20.
    Zhang J, Zheng L, Guo X, Ji V, Klosek V (2014) Residual stresses comparison determined by short-wavelength X-ray diffraction and neutron diffraction for 7075 aluminum alloy. J Nondestruct Eval 33(1):82–92. doi: 10.1007/s10921-013-0205-9 Google Scholar
  21. 21.
    Zheng L, He C, Peng Z (2009) Measuring device for the short-wavelength X ray diffraction and a method thereof. US Patent 7583788Google Scholar
  22. 22.
    Zhang J, Li F, Zheng L, Guo X (2013) Internal residual stresses in the friction stir weldment of 2024-T351 Al alloy determined by short wavelength X-ray diffraction. J Mech Eng 2(49):77–88Google Scholar
  23. 23.
    Hutchings MT, Withers PJ, Holden TM, Lorentzen T (2005) Introduction to the characterization of residual stress by neutron diffraction. CRC Press, Boca RatonGoogle Scholar
  24. 24.
    Steuwer A, Peel MJ, Withers PJ (2006) Dissimilar friction stir welds in AA5083–AA6082: the effect of process parameters on residual stress. Mater Sci Eng A 441(1–2):187–196. doi: 10.1016/j.msea.2006.08.012 CrossRefGoogle Scholar
  25. 25.
    Bussu G, Irving PE (2003) The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints. Int J Fatigue 25(1):77–88. doi: 10.1016/S0142-1123(02)00038-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pengfei Ji
    • 1
  • Zhongyu Yang
    • 1
  • Jin Zhang
    • 1
    Email author
  • Lin Zheng
    • 2
  • Vincent Ji
    • 3
  • Vincent Klosek
    • 4
  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Southwest Technology and Engineering Research InstituteChongqingChina
  3. 3.ICMMO/LEMHE, Universite Paris-Sud 11OrsayFrance
  4. 4.Laboratoire Léon Brillouin, CEA-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations