Journal of Materials Science

, Volume 50, Issue 20, pp 6656–6667 | Cite as

Microbiological and compositional features of green stains in the glaze of the Portuguese “Great View of Lisbon” tile panel

  • Sandra Cabo Verde
  • Telma Silva
  • Victoria Corregidor
  • Lurdes Esteves
  • Maria Isabel Dias
  • Virginia Souza-Egipsy
  • Carmen Ascaso
  • Jacek Wierzchos
  • Luis Santos
  • Maria Isabel Prudêncio
Original Paper
  • 195 Downloads

Abstract

The “Great View of Lisbon” is one of the most remarkable blue-and-white Portuguese tile panels, which depicts the city before the tragic earthquake of 1755. This panel presents visible colored alteration in the glaze of tiles both from the exhibition and the depository of the Museu Nacional do Azulejo (Portugal). This work is a contribution to identify the origin of green stains in the glaze by using microbiological techniques, scanning electron microscopy with back-scattered electron imaging (SEM-BSE), Raman spectroscopy, and proton-induced X-ray emission (PIXE). The microbiological assays showed that the filamentous fungi were detected only at a frequency <10 % of the microbiota of tiles surface, and the microbial entities from the green stains cultures were identified as Aspergillus fumigatus by molecular biology techniques. However, no microorganisms or other biological elements were found by SEM-BSE in the green stains. Raman spectroscopy and PIXE results showed that the green stains appear to be related with the presence of chromium atoms in the outer part of the glaze. Eskolaite, a “green pigment” used before 1850 AD was clearly identified by Raman spectroscopy in the darker green stains. Nevertheless, no chromium oxide signatures were identified in the lighter green stains by Raman spectroscopy.

References

  1. 1.
    Carvalho AP, Vaz MF, Samora MJ, Pires J (2006) Characterization of ceramic pastes of Portuguese ancient tiles. Mater Sci Forum 514–516:1648–1652CrossRefGoogle Scholar
  2. 2.
    Dias MI, Prudêncio MI, Pinto De Matos MA, Luisa Rodrigues A (2013) Tracing the origin of blue and white Chinese Porcelain ordered for the Portuguese market during the Ming dynasty using INAA. J Archaeol Sci 40:3046–3057CrossRefGoogle Scholar
  3. 3.
    Larbi JA (2004) Microscopy applied to the diagnosis of the deterioration of brick masonry. Constr Build Mater 18:299–307CrossRefGoogle Scholar
  4. 4.
    Casasola R, Ma Rincón J, Romero M (2012) Glass–ceramic glazes for ceramic tiles: a review. J Mater Sci 47:553–582CrossRefGoogle Scholar
  5. 5.
    Borges C, Caetano C, Costa Pessoa J, Figueiredo MO, Lourenço A, Gomes MM, Silva TP, Veiga JP (1997) Monitoring the removal of soluble salts from ancient tiles by ion chromatography. J Chromatogr A 770:195–201CrossRefGoogle Scholar
  6. 6.
    Oliveira MM, Sanjad TBC, Bastos CJP (2001) Biological degradation of glazed ceramic tiles. In: Lourenço PB, Roca P (eds) Historical constructions. University of Minho, Guimarães, pp 337–342Google Scholar
  7. 7.
    Giacomucci L, Bertoncello R, Salvadori O, Martini I, Favaro M, Villa F, Sorlini C, Cappitelli F (2011) Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microb Ecol 62:287–298CrossRefGoogle Scholar
  8. 8.
    Coutinho ML, Miller AZ, Gutierrez-Patricio S, Hernandez-Marine M, Gomez-Bolea A, Rogerio-Candelera MA, Philips AJL, Jurado V, Saiz-Jimenez C, Macedo MF (2013) Microbial communities on deteriorated artistic tiles from Pena National Palace (Sintra, Portugal). Int Biodeterior Biodegrad 84:322–332CrossRefGoogle Scholar
  9. 9.
    Prudêncio MI, Stanojev Pereira MA, Marques JG, Dias MI, Esteves L, Burbidge CI, Trindade MJ, Albuquerque MB (2012) Neutron tomography for the assessment of consolidant impregnation efficiency in portuguese glazed tiles (16th and 18th centuries). J Archaeol Sci 39:964–969CrossRefGoogle Scholar
  10. 10.
    Nunes I, Mesquita N, Cabo Verde S, Carolino MM, Portugal A, Botelho ML (2013) Bioburden assessment and gamma radiation inactivation patterns in parchment documents. Radiat Phys Chem 88:82–89CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Silva TP, Figueiredo MO, Barreiros MA, Prudêncio MI (2013) Decorative 18th century blue-and-white Portuguese tile panels: a type-case of environmental degradation. J Mater. doi:10.1155/2013/972018 Google Scholar
  13. 13.
    Silva TP, Figueiredo MO, Prudêncio MI (2013) Ascertaining the degradation state of ceramic tiles: a preliminary non-destructive step in view of conservation treatments. Appl Clay Sci 82:101–105CrossRefGoogle Scholar
  14. 14.
    Silva TP, Figueiredo MO, Barreiros MA, Prudêncio MI (2014) Diagnosis of pathologies in ancient (seventeenth-eighteenth centuries) decorative blue-and-white ceramic tiles: Green stains in the glazes of a panel depicting Lisbon prior to the 1755 earthquake. Stud Conserv 59(2):63–68CrossRefGoogle Scholar
  15. 15.
    Simões JMS (1961) Iconografia olissiponense em azulejos. Olisipo 95:115–1342Google Scholar
  16. 16.
    Vieira da Silva A (1932) Museu Nacional de Arte Antiga, Armas e Troféus I:6–24.Google Scholar
  17. 17.
    Meco J (1994) Azulejos com Iconografia de Lisbon—Breve revisão. Olisipo II:1Google Scholar
  18. 18.
    Pereira J C-B, Gomes MM, Tavares DS (1992) The treatment of ancient Portuguese Tiles, Conservation of the Iberian and Latin American Cultural Heritage. Proceedings of the IIC Madrid Congress, pp 112–115.Google Scholar
  19. 19.
    Holt, JG, Kreig NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th ed. Williams and Wilkins Editors, BaltimoreGoogle Scholar
  20. 20.
    Mesquita N, Portugal A, Videira S, Rodríguez-Echeverría S, Bandeira AML, Santos MJA, Freitas H (2009) Fungal diversity in ancient documents. A case study on the archive of the University of Coimbra. Int Biodeterior Biodegrad 63:626–629CrossRefGoogle Scholar
  21. 21.
    Wierzchos J, Ascaso C (1996) Morphological and chemical features of bioweathered granitic biotite induced by lichen activity. Clay Clay Miner 44:652–657CrossRefGoogle Scholar
  22. 22.
    Wierzchos J, Ascaso C (1994) Application of back-scattered electron imaging to the study of the lichen rock interface. J Microsc 175:54–59CrossRefGoogle Scholar
  23. 23.
    Wierzchos J, Ascaso C (1998) Mineralogical transformation of bioweathered granitic biotite, studied by HRTEM: evidence for a new pathway in lichen activity. Clay Clay Miner 46:446–452CrossRefGoogle Scholar
  24. 24.
    Guilherme A, Hodoroaba V-D, Benemann S, Coroado J, Carvalho ML (2014) Morphological and compositional features of blue and yellow pigments used in Portuguese glazed ceramics by SEM/EDX—unravelling manufacturing differences. J Anal At Spectrom 29:51–57CrossRefGoogle Scholar
  25. 25.
    Villar SEJ, Edwards HGM (2006) Raman spectroscopy in astrobiology. Anal Bioanal Chem 384:100–113CrossRefGoogle Scholar
  26. 26.
    Alves LC, Breese MBH, Alves E, Paúl A, da Silva MR, da Silva MF, Soares JC (2000) Micron-scale analysis of SiC/SiCf composites using the new Lisbon nuclear microprobe. Nucl Instrum Methods Phys Res Sect B 161–163:334–338CrossRefGoogle Scholar
  27. 27.
    Corregidor V, Alves LC, Barradas NP, Reis MA, Marques MT, Ribeiro JA (2011) Characterization of mercury gilding art objects by external proton beam. Nucl Instrum Methods B 269:3049–3053CrossRefGoogle Scholar
  28. 28.
    Corregidor V, Alves LC, Rodrigues PA, Vilarigues M, Silva RC (2011) The external ion beam facility in Portugal for studying cultural heritage. E-Conserv Mag 22:40–52Google Scholar
  29. 29.
    Pedi N, Conceição E, Fernandes MJ, Massa D, Nogueira E, Pérside R, Arcoverde JH, Lemos S, Marsden A, Neves R. (2009) Fungos isolados em azulejos do convento de Santo António, Recife, Pernambuco. In: JEPEX 2009—IX Jornada de Ensino, Pesquisa e Extensão da UFRPE, pp 550–551Google Scholar
  30. 30.
    Latgé JP (1999) Aspergillus fumigatus and Aspergillosis. Clin Microbiol Rev 12:310–350Google Scholar
  31. 31.
    Sharma K, Lanjewar S (2010) Biodeterioration of ancient monument (Devarbija) of Chhattisgarh by fungi. J Phytol 2:47–49Google Scholar
  32. 32.
    De la Rosa-García SC, Ortega-Morales O, Gaylarde CC, Beltrán-García M, Quintana-Owen P, Reyes-Estebanez M (2011) Influence of fungi in the weathering of limestone of Mayan monuments. Revista Mexicana de Micología 33:43–51Google Scholar
  33. 33.
    Palmer RJ Jr, Hirsch P (1991) Photosynthesis-based microbial communities on two churches in Northern Germany: weathering of granite and glazed brick. Geomicrobiol J 9:103–118CrossRefGoogle Scholar
  34. 34.
    Langfelder K, Philippe B, Jahn B, Latge JP, Brakhage AA (2001) Differential expression of the Aspergillus fumigatus pksP gene detected in vitro and in vivo with green fluorescent protein. Infect Immun 69:6411–6418CrossRefGoogle Scholar
  35. 35.
    Ascaso C, Wierzchos J, Souza-Egipsy V, de los Ríos A, Rodrigues JD (2002) In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int Biodeterior Biodegrad 49:1–12CrossRefGoogle Scholar
  36. 36.
    Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169Google Scholar
  37. 37.
    Bouchard M, Smith DC (2003) Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archeology, especially on corroded metals and coloured glass. Spectrochim Acta Mol Biomol 59:2247–2266CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Colomban P, Sagon G, Faurel X (2001) Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. J Raman Spectrosc 32:351–360CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Sandra Cabo Verde
    • 1
  • Telma Silva
    • 1
  • Victoria Corregidor
    • 2
  • Lurdes Esteves
    • 3
  • Maria Isabel Dias
    • 1
  • Virginia Souza-Egipsy
    • 4
  • Carmen Ascaso
    • 5
  • Jacek Wierzchos
    • 5
  • Luis Santos
    • 6
  • Maria Isabel Prudêncio
    • 1
  1. 1.Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior TécnicoUniversidade de LisboaBobadelaPortugal
  2. 2.IPFN, Instituto Superior Técnico, Campus Tecnológico e NuclearUniversidade de LisboaBobadelaPortugal
  3. 3.Museu Nacional do AzulejoLisbonPortugal
  4. 4.Instituto de Ciencias Agrarias, ICA-CSICMadridSpain
  5. 5.Museo Nacional Ciencias Naturales MNCN-CSICMadridSpain
  6. 6.Centro de Química Estrutural and Departmento de Engenharia Química, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations